Convex Optimization in Machine Learning and Inverse Problems Part 1: Applications of Sparse Optimization

Mário A. T. Figueiredo ${ }^{1}$ and Stephen J. Wright ${ }^{2}$

${ }^{1}$ Instituto de Telecomunicações, Instituto Superior Técnico, Lisboa, Portugal
${ }^{2}$ Computer Sciences Department, University of Wisconsin, Madison, WI, USA

Condensed version of ICCOPT tutorial, Lisbon, Portugal, 2013
"There is nothing as practical as a good theory", Lewin, 1952
"There is nothing as practical as a good theory", Lewin, 1952

Inference via Optimization

Many inference problems are formulated as optimization problems:

- image reconstruction
- image restoration/denoising
- supervised learning
- unsupervised learning
- statistical inference

Inference via Optimization

Many inference problems are formulated as optimization problems:

- image reconstruction
- image restoration/denoising
- supervised learning
- unsupervised learning
- statistical inference
- ...

Standard formulation:

- observed data: y
- unknown mathematical object (signal, image, vector, matrix,...):
- inference criterion:

$$
\widehat{x} \in \arg \min _{x} g(x, y)
$$

Inference via Optimization

Inference criterion:

$$
\widehat{x} \in \arg \min _{x} g(x, y)
$$

Question 1: how to build g ? Where does it come from?
Answer: from the application domain (machine learning, signal processing, inverse problems, system identification, statistics, computer vision, bioinformatics,...);
... examples ahead.

Inference via Optimization

Inference criterion:

$$
\widehat{x} \in \arg \min _{x} g(x, y)=\left\{x: g(x, y) \leq g(z, y), \forall_{z}\right\}
$$

Question 1: how to build g ? Where does it come from?
Answer: from the application domain (machine learning, signal processing, inverse problems, system identification, statistics, computer vision, bioinformatics,...);
... examples ahead.

Inference via Optimization

Inference criterion:

$$
\widehat{x} \in \arg \min _{x} g(x, y)=\left\{x: g(x, y) \leq g(z, y), \forall_{z}\right\}
$$

Question 1: how to build g ? Where does it come from?
Answer: from the application domain (machine learning, signal processing, inverse problems, system identification, statistics, computer vision, bioinformatics,...);
... examples ahead.

Question 2: how to solve the optimization problem?
Answer: the focus of this tutorial.

Regularized Optimization

Inference criterion:

Typical structure of g :

$$
\hat{x} \in \arg \min _{x} g(x, y)
$$

$$
g(x, y)=h(x, y)+\tau \psi(x)
$$

Regularized Optimization

Inference criterion: $\quad \hat{x} \in \arg \min _{x} g(x, y)$

Typical structure of $g: \quad g(x, y)=h(x, y)+\tau \psi(x)$

- $h(x, y) \rightarrow$ how well x "fits" / "explains" the data y; (data term, log-likelihood, loss function, observation model,...)

Regularized Optimization

Inference criterion: $\quad \hat{x} \in \arg \min _{x} g(x, y)$

Typical structure of $g: \quad g(x, y)=h(x, y)+\tau \psi(x)$

- $h(x, y) \rightarrow$ how well x "fits" / "explains" the data y;
(data term, log-likelihood, loss function, observation model,...)
- $\psi(x) \rightarrow$ knowledge/constraints/structure: the regularizer
- $\tau \geq 0$: the regularization parameter (or constant).

Regularized Optimization

Inference criterion:

$$
\widehat{x} \in \arg \min _{x} g(x, y)
$$

Typical structure of g :

$$
g(x, y)=h(x, y)+\tau \psi(x)
$$

- $h(x, y) \rightarrow$ how well x "fits" / "explains" the data y;
(data term, log-likelihood, loss function, observation model,...)
- $\psi(x) \rightarrow$ knowledge/constraints/structure: the regularizer
- $\tau \geq 0$: the regularization parameter (or constant).
- Since y is fixed, we often write simply $f(x)=h(x, y)$,

$$
\min _{x} f(x)+\tau \psi(x)
$$

Probabilistic/Bayesian Interpretations

Inference criterion:

Typical structure of g :

$\widehat{x} \in \arg \min _{x} g(x, y)$

$$
g(x, y)=h(x, y)+\tau \psi(x)
$$

Probabilistic/Bayesian Interpretations

Inference criterion:

Typical structure of g :

$$
\widehat{x} \in \arg \min _{x} g(x, y)
$$

$$
g(x, y)=h(x, y)+\tau \psi(x)
$$

- Likelihood (observation model): $\quad p(y \mid x)=\frac{1}{Z_{l}} \exp (-h(x, y))$

Probabilistic/Bayesian Interpretations

Inference criterion:

$$
\widehat{x} \in \arg \min _{x} g(x, y)
$$

Typical structure of g :

$$
g(x, y)=h(x, y)+\tau \psi(x)
$$

- Likelihood (observation model): $\quad p(y \mid x)=\frac{1}{Z_{l}} \exp (-h(x, y))$
- Prior: $p(x)=\frac{1}{Z_{p}} \exp (-\tau \psi(x))$

Probabilistic/Bayesian Interpretations

Inference criterion:

$$
\widehat{x} \in \arg \min _{x} g(x, y)
$$

Typical structure of g :

$$
g(x, y)=h(x, y)+\tau \psi(x)
$$

- Likelihood (observation model): $p(y \mid x)=\frac{1}{Z_{l}} \exp (-h(x, y))$
- Prior: $p(x)=\frac{1}{Z_{p}} \exp (-\tau \psi(x))$
- Posterior: $\quad p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}$

Probabilistic/Bayesian Interpretations

Inference criterion:

$$
\widehat{x} \in \arg \min _{x} g(x, y)
$$

Typical structure of g :

$$
g(x, y)=h(x, y)+\tau \psi(x)
$$

- Likelihood (observation model): $\quad p(y \mid x)=\frac{1}{Z_{l}} \exp (-h(x, y))$
- Prior: $p(x)=\frac{1}{Z_{p}} \exp (-\tau \psi(x))$
- Posterior: $p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}$
- Log-posterior: $\log p(x \mid y)=K(y)-h(x, y)-\tau \psi(x)$

Probabilistic/Bayesian Interpretations

Inference criterion:

$$
\widehat{x} \in \arg \min _{x} g(x, y)
$$

Typical structure of g :

$$
g(x, y)=h(x, y)+\tau \psi(x)
$$

- Likelihood (observation model): $\quad p(y \mid x)=\frac{1}{Z_{l}} \exp (-h(x, y))$
- Prior: $p(x)=\frac{1}{Z_{p}} \exp (-\tau \psi(x))$
- Posterior: $p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}$
- Log-posterior: $\log p(x \mid y)=K(y)-h(x, y)-\tau \psi(x)=K(y)-g(x, y)$

Probabilistic/Bayesian Interpretations

Inference criterion:

$$
\widehat{x} \in \arg \min _{x} g(x, y)
$$

Typical structure of g :

$$
g(x, y)=h(x, y)+\tau \psi(x)
$$

- Likelihood (observation model): $\quad p(y \mid x)=\frac{1}{Z_{l}} \exp (-h(x, y))$
- Prior: $\quad p(x)=\frac{1}{Z_{p}} \exp (-\tau \psi(x))$
- Posterior: $p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}$
- Log-posterior: $\log p(x \mid y)=K(y)-h(x, y)-\tau \psi(x)=K(y)-g(x, y)$
- \hat{x} is a maximum a posteriori (MAP) estimate.

Regularizers

Inference criterion: $\quad \min _{x} f(x)+\tau \psi(x)$
Typically, the unknown is a vector $x \in \mathbb{R}^{n}$ or a matrix $x \in \mathbb{R}^{n \times m}$

Regularizers

Inference criterion:

$$
\min _{x} f(x)+\tau \psi(x)
$$

Typically, the unknown is a vector $x \in \mathbb{R}^{n}$ or a matrix $x \in \mathbb{R}^{n \times m}$

Common regularizers impose/encourage one (or a combination of) the following characteristics:

- small norm (vector or matrix)
- sparsity (few nonzeros)
- specific nonzero patterns (e.g., group/tree structure)
- low-rank (matrix)
- smoothness or piece-wise smoothness
- ...

Unconstrained vs Constrained Formulations

- Tikhonov regularization:

$$
\min _{x} f(x)+\tau \psi(x)
$$

Unconstrained vs Constrained Formulations

- Tikhonov regularization:
- Morozov regularization:
- Ivanov regularization:
$\min _{x} f(x)+\tau \psi(x)$
$\begin{array}{ll}\min _{x} & \psi(x) \\ \text { subject to } & f(x) \leq \varepsilon\end{array}$
$\min _{x} \quad f(x)$
subject to $\quad \psi(x) \leq \delta$

Unconstrained vs Constrained Formulations

- Tikhonov regularization:

$$
\min _{x} f(x)+\tau \psi(x)
$$

- Morozov regularization:

$$
\begin{array}{ll}
\min _{x} & \psi(x) \\
\text { subject to } & f(x) \leq \varepsilon
\end{array}
$$

- Ivanov regularization:

Under mild conditions, these are all "equivalent".
Morozov and Ivanov can be written as Tikhonov using indicator functions (more later).

Which one is more convenient is problem-dependent.

Example: Under- and Over-Constrained Systems

A simple linear inverse problem: from $y=A x$, find $x \quad\left(A \in \mathbb{R}^{m \times n}\right)$

Example: Under- and Over-Constrained Systems

A simple linear inverse problem: from $y=A x$, find $x \quad\left(A \in \mathbb{R}^{m \times n}\right)$

- Trivial case, A is invertible: $x=A^{-1} y$

Example: Under- and Over-Constrained Systems

A simple linear inverse problem: from $y=A x$, find $x \quad\left(A \in \mathbb{R}^{m \times n}\right)$

- Trivial case, A is invertible: $x=A^{-1} y$
- Over-determined system $(m>n)$; least squares solution $(\operatorname{rank}(A)=n)$:
$\widehat{x}=\arg \min _{x} \sum_{i=1}^{n}\left(y_{i}-(A x)_{i}\right)^{2}=\arg \min _{x}\|y-A x\|_{2}^{2}=\left(A^{T} A\right)^{-1} A^{T} y$

Example: Under- and Over-Constrained Systems

A simple linear inverse problem: from $y=A x$, find $x \quad\left(A \in \mathbb{R}^{m \times n}\right)$

- Trivial case, A is invertible: $x=A^{-1} y$
- Over-determined system $(m>n)$; least squares solution $(\operatorname{rank}(A)=n)$:

$$
\widehat{x}=\arg \min _{x} \sum_{i=1}^{n}\left(y_{i}-(A x)_{i}\right)^{2}=\arg \min _{x}\|y-A x\|_{2}^{2}=\left(A^{T} A\right)^{-1} A^{T} y
$$

- Under-determined system $(m<n)$; minimum norm solution $(\operatorname{rank}(A)=m)$:

$$
\widehat{x}=\left\{\begin{array}{l}
\arg \min _{x}\|x\|_{2}^{2} \\
\text { s.t. } A x=y
\end{array}\right\}=A^{T}\left(A A^{T}\right)^{-1} y
$$

Example: Under- and Over-Constrained Systems

A simple linear inverse problem: from $y=A x$, find $x \quad\left(A \in \mathbb{R}^{m \times n}\right)$

- Trivial case, A is invertible: $x=A^{-1} y$
- Over-determined system $(m>n)$; least squares solution $(\operatorname{rank}(A)=n)$:

$$
\widehat{x}=\arg \min _{x} \sum_{i=1}^{n}\left(y_{i}-(A x)_{i}\right)^{2}=\arg \min _{x}\|y-A x\|_{2}^{2}=\left(A^{T} A\right)^{-1} A^{T} y
$$

- Under-determined system $(m<n)$; minimum norm solution $(\operatorname{rank}(A)=m)$:

$$
\widehat{x}=\left\{\begin{array}{l}
\arg \min _{x}\|x\|_{2}^{2} \\
\text { s.t. } A x=y
\end{array}\right\}=A^{T}\left(A A^{T}\right)^{-1} y
$$

- Non-trivial cases: resort to optimization and regularization.

Example: Under- and Over-Constrained Systems

A simple linear inverse problem: from $y=A x$, find $x \quad\left(A \in \mathbb{R}^{m \times n}\right)$

- Trivial case, A is invertible: $x=A^{-1} y$
- Over-determined system $(m>n)$; least squares solution $(\operatorname{rank}(A)=n)$:

$$
\widehat{x}=\arg \min _{x} \sum_{i=1}^{n}\left(y_{i}-(A x)_{i}\right)^{2}=\arg \min _{x}\|y-A x\|_{2}^{2}=\left(A^{T} A\right)^{-1} A^{T} y
$$

- Under-determined system $(m<n)$; minimum norm solution $(\operatorname{rank}(A)=m)$:

$$
\widehat{x}=\left\{\begin{array}{l}
\arg \min _{x}\|x\|_{2}^{2} \\
\text { s.t. } A x=y
\end{array}\right\}=A^{T}\left(A A^{T}\right)^{-1} y
$$

- Non-trivial cases: resort to optimization and regularization.
- Quadratic (Euclidean) losses and regularizers have a long and rich history: Gauss, Legendre, Wiener, Moore-Penrose, Tikhonov, ...

Norms: A Quick Review

Consider some real vector space \mathcal{V}, for example, \mathbb{R}^{n} or $\mathbb{R}^{n \times n}, \ldots$

Norms: A Quick Review

Consider some real vector space \mathcal{V}, for example, \mathbb{R}^{n} or $\mathbb{R}^{n \times n}, \ldots$
Some function $\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}_{+}$is a norm if it satisfies:

- $\|\alpha x\|=|\alpha|\|x\|$, for any $x \in \mathcal{V}$ and $\alpha \in \mathbb{R} \quad$ (homogeneity);

Norms: A Quick Review

Consider some real vector space \mathcal{V}, for example, \mathbb{R}^{n} or $\mathbb{R}^{n \times n}, \ldots$
Some function $\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}_{+}$is a norm if it satisfies:

- $\|\alpha x\|=|\alpha|\|x\|$, for any $x \in \mathcal{V}$ and $\alpha \in \mathbb{R} \quad$ (homogeneity);
- $\left\|x+x^{\prime}\right\| \leq\|x\|+\left\|x^{\prime}\right\|$, for any $x, x^{\prime} \in \mathcal{V} \quad$ (triangle inequality);

Norms: A Quick Review

Consider some real vector space \mathcal{V}, for example, \mathbb{R}^{n} or $\mathbb{R}^{n \times n}, \ldots$
Some function $\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}_{+}$is a norm if it satisfies:

- $\|\alpha x\|=|\alpha|\|x\|$, for any $x \in \mathcal{V}$ and $\alpha \in \mathbb{R} \quad$ (homogeneity);
- $\left\|x+x^{\prime}\right\| \leq\|x\|+\left\|x^{\prime}\right\|$, for any $x, x^{\prime} \in \mathcal{V} \quad$ (triangle inequality);
- $\|x\|=0 \Rightarrow x=0$.

Norms: A Quick Review

Consider some real vector space \mathcal{V}, for example, \mathbb{R}^{n} or $\mathbb{R}^{n \times n}, \ldots$
Some function $\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}_{+}$is a norm if it satisfies:

- $\|\alpha x\|=|\alpha|\|x\|$, for any $x \in \mathcal{V}$ and $\alpha \in \mathbb{R} \quad$ (homogeneity);
- $\left\|x+x^{\prime}\right\| \leq\|x\|+\left\|x^{\prime}\right\|$, for any $x, x^{\prime} \in \mathcal{V} \quad$ (triangle inequality);
- $\|x\|=0 \Rightarrow x=0$.

Examples:

- $\mathcal{V}=\mathbb{R}^{n},\|x\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p} \quad\left(\right.$ called ℓ_{p} norm, for $\left.p \geq 1\right)$.

Norms: A Quick Review

Consider some real vector space \mathcal{V}, for example, \mathbb{R}^{n} or $\mathbb{R}^{n \times n}, \ldots$
Some function $\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}_{+}$is a norm if it satisfies:

- $\|\alpha x\|=|\alpha|\|x\|$, for any $x \in \mathcal{V}$ and $\alpha \in \mathbb{R} \quad$ (homogeneity);
- $\left\|x+x^{\prime}\right\| \leq\|x\|+\left\|x^{\prime}\right\|$, for any $x, x^{\prime} \in \mathcal{V} \quad$ (triangle inequality);
- $\|x\|=0 \Rightarrow x=0$.

Examples:

- $\mathcal{V}=\mathbb{R}^{n},\|x\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p} \quad\left(\right.$ called ℓ_{p} norm, for $\left.p \geq 1\right)$.
- $\mathcal{V}=\mathbb{R}^{n},\|x\|_{\infty}=\lim _{p \rightarrow \infty}\|x\|_{p}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$

Norms: A Quick Review

Consider some real vector space \mathcal{V}, for example, \mathbb{R}^{n} or $\mathbb{R}^{n \times n}, \ldots$
Some function $\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}_{+}$is a norm if it satisfies:

- $\|\alpha x\|=|\alpha|\|x\|$, for any $x \in \mathcal{V}$ and $\alpha \in \mathbb{R} \quad$ (homogeneity);
- $\left\|x+x^{\prime}\right\| \leq\|x\|+\left\|x^{\prime}\right\|$, for any $x, x^{\prime} \in \mathcal{V} \quad$ (triangle inequality);
- $\|x\|=0 \Rightarrow x=0$.

Examples:

- $\mathcal{V}=\mathbb{R}^{n},\|x\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p} \quad\left(\right.$ called ℓ_{p} norm, for $\left.p \geq 1\right)$.
- $\mathcal{V}=\mathbb{R}^{n},\|x\|_{\infty}=\lim _{p \rightarrow \infty}\|x\|_{p}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$
- $\mathcal{V}=\mathbb{R}^{n \times m},\|X\|_{*}=\operatorname{trace}\left(\sqrt{X^{T} X}\right) \quad$ (matrix nuclear norm)

Norms: A Quick Review

Consider some real vector space \mathcal{V}, for example, \mathbb{R}^{n} or $\mathbb{R}^{n \times n}, \ldots$
Some function $\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}_{+}$is a norm if it satisfies:

- $\|\alpha x\|=|\alpha|\|x\|$, for any $x \in \mathcal{V}$ and $\alpha \in \mathbb{R} \quad$ (homogeneity);
- $\left\|x+x^{\prime}\right\| \leq\|x\|+\left\|x^{\prime}\right\|$, for any $x, x^{\prime} \in \mathcal{V} \quad$ (triangle inequality);
- $\|x\|=0 \Rightarrow x=0$.

Examples:

- $\mathcal{V}=\mathbb{R}^{n},\|x\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p} \quad\left(\right.$ called ℓ_{p} norm, for $\left.p \geq 1\right)$.
- $\mathcal{V}=\mathbb{R}^{n},\|x\|_{\infty}=\lim _{p \rightarrow \infty}\|x\|_{p}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$
- $\mathcal{V}=\mathbb{R}^{n \times m},\|X\|_{*}=\operatorname{trace}\left(\sqrt{X^{T} X}\right) \quad$ (matrix nuclear norm)

Also important (but not a norm): $\|x\|_{0}=\lim _{p \rightarrow 0}\|x\|_{p}^{p}=\left|\left\{i: x_{i} \neq 0\right\}\right|$

Norm balls

Radius r ball in ℓ_{p} norm: $\quad B_{p}(r)=\left\{x \in \mathbb{R}^{n}:\|x\|_{p} \leq r\right\}$

$$
p=1
$$

$p=2$

$p=\infty$

$p=1$

$p=2$

Examples: Back to Under-Constrained Systems

A simple linear inverse problem: from $y=A x$, find $x \quad\left(A \in \mathbb{R}^{m \times n}\right)$

- Under-determined system $(m<n)$; minimum norm solution:

$$
\widehat{x}=\left\{\begin{array}{l}
\arg \min _{x}\|x\|_{2}^{2} \\
\text { s.t. } A x=y
\end{array}\right\}=A^{*}\left(A A^{*}\right)^{-1} y
$$

Examples: Back to Under-Constrained Systems

A simple linear inverse problem: from $y=A x$, find $x \quad\left(A \in \mathbb{R}^{m \times n}\right)$

- Under-determined system $(m<n)$; minimum norm solution:

$$
\widehat{x}=\left\{\begin{array}{l}
\arg \min _{x}\|x\|_{2}^{2} \\
\text { s.t. } A x=y
\end{array}\right\}=A^{*}\left(A A^{*}\right)^{-1} y \neq x \text { (in general) }
$$

Examples: Back to Under-Constrained Systems

A simple linear inverse problem: from $y=A x$, find $x \quad\left(A \in \mathbb{R}^{m \times n}\right)$

- Under-determined system $(m<n)$; minimum norm solution:

$$
\widehat{x}=\left\{\begin{array}{l}
\arg \min _{x}\|x\|_{2}^{2} \\
\text { s.t. } A x=y
\end{array}\right\}=A^{*}\left(A A^{*}\right)^{-1} y \neq x \quad \text { (in general) }
$$

- Can we hope to recover x ? Yes! ...if x is sparse enough $\left(\|x\|_{0}<k\right)$ and A satisfies some conditions, using

$$
\begin{aligned}
\widehat{x}= & \arg \min _{x}\|x\|_{0} \\
& \text { s.t. } A x=y
\end{aligned}
$$

Several proofs, under different conditions (more later).
But, this is a hard problem! ℓ_{0} "norm" is not convex.

Review of Basics: Convex Sets

Convex and strictly convex sets

$$
\mathcal{S} \text { is convex if } x, x^{\prime} \in \mathcal{S} \Rightarrow \forall \lambda \in[0,1], \quad \lambda x+(1-\lambda) x^{\prime} \in \mathcal{S}
$$

\mathcal{S} is strictly convex if $x, x^{\prime} \in \mathcal{S} \Rightarrow \forall \lambda \in(0,1), \quad \lambda x+(1-\lambda) x^{\prime} \in \operatorname{int}(\mathcal{S})$

Review of Basics: Convex Functions

Extended real valued function: $f: \mathbb{R}^{N} \rightarrow \overline{\mathbb{R}}=\mathbb{R} \cup\{+\infty\}$
Domain: $\operatorname{dom}(f)=\{x: f(x) \neq+\infty\}$
f is proper if $\operatorname{dom}(f) \neq \emptyset$
f is convex if
$\forall \lambda \in[0,1], x, x^{\prime} \in \operatorname{dom}(f) f\left(\lambda x+(1-\lambda) x^{\prime}\right) \leq \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right)$
f is strictly convex if

$$
\forall \lambda \in(0,1), x, x^{\prime} \in \operatorname{dom}(f) f\left(\lambda x+(1-\lambda) x^{\prime}\right)<\lambda f(x)+(1-\lambda) f\left(x^{\prime}\right)
$$

non-convex

strictly convex

convex, not strictly

Lower Semi-Continuity: Why Is It Important?

A function $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is lower semi-continuous (l.s.c.) if

$$
\liminf _{x \rightarrow x_{0}} \geq f\left(x_{0}\right), \text { for any } x_{0} \in \operatorname{dom}(f)
$$

or, equivalently, $\{x: f(x) \leq \alpha\}$ is a closed set, for any $\alpha \in \mathbb{R}$

$$
f(x)= \begin{cases}e^{-x}, & \text { if } x<0 \\ +\infty, & \text { if } x \geq 0\end{cases}
$$

$\operatorname{dom}(f)=]-\infty, 0\left[, \quad \arg \min _{x} f(x)=\emptyset\right.$

$$
f(x)= \begin{cases}e^{-x}, & \text { if } x \leq 0 \\ +\infty, & \text { if } x>0\end{cases}
$$

$$
\operatorname{dom}(f)=]-\infty, 0], \quad \arg \min _{x} f(x)=\{0\}
$$

Unless stated otherwise, we only consider I.s.c. functions.

Coercivity, Convexity, and Minima

$$
f: \mathbb{R}^{N} \rightarrow \overline{\mathbb{R}}=\mathbb{R} \cup\{+\infty\}
$$

f is coercive if $\lim _{\|x\| \rightarrow+\infty} f(x)=+\infty$
if f is coercive, then $G \equiv \arg \min _{x} f(x)$ is a non-empty set
if f is strictly convex, then G has at most one element

Another Important Concept: Strong Convexity

Recall the definition of convex function: $\forall \lambda \in[0,1]$,

$$
f\left(\lambda x+(1-\lambda) x^{\prime}\right) \leq \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right)
$$

Another Important Concept: Strong Convexity

Recall the definition of convex function: $\forall \lambda \in[0,1]$,

$$
f\left(\lambda x+(1-\lambda) x^{\prime}\right) \leq \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right)
$$

A β-strongly convex function satisfies a stronger condition: $\forall \lambda \in[0,1]$

$$
f\left(\lambda x+(1-\lambda) x^{\prime}\right) \leq \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right)-\frac{\beta}{2} \lambda(1-\lambda)\left\|x-x^{\prime}\right\|_{2}^{2}
$$

convexity

strong convexity

Another Important Concept: Strong Convexity

Recall the definition of convex function: $\forall \lambda \in[0,1]$,

$$
f\left(\lambda x+(1-\lambda) x^{\prime}\right) \leq \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right)
$$

A β-strongly convex function satisfies a stronger condition: $\forall \lambda \in[0,1]$

$$
f\left(\lambda x+(1-\lambda) x^{\prime}\right) \leq \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right)-\frac{\beta}{2} \lambda(1-\lambda)\left\|x-x^{\prime}\right\|_{2}^{2}
$$

convexity

strong convexity

Strong convexity $\underset{ }{\nRightarrow}$ strict convexity.

A Little More on Convex Functions

Let $f_{1}, \ldots, f_{N}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be convex functions. Then

A Little More on Convex Functions

Let $f_{1}, \ldots, f_{N}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be convex functions. Then

- $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, defined as $f(x)=\max \left\{f_{1}(x), \ldots, f_{N}(x)\right\}$, is convex.

A Little More on Convex Functions

Let $f_{1}, \ldots, f_{N}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be convex functions. Then

- $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, defined as $f(x)=\max \left\{f_{1}(x), \ldots, f_{N}(x)\right\}$, is convex.
- $g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, defined as $g(x)=f_{1}(L(x))$, where L is affine, is convex. Note: L is affine $\Leftrightarrow L(x)-L(0)$ is linear; e.g. $L(x)=A x+b$.

A Little More on Convex Functions

Let $f_{1}, \ldots, f_{N}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be convex functions. Then

- $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, defined as $f(x)=\max \left\{f_{1}(x), \ldots, f_{N}(x)\right\}$, is convex.
- $g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, defined as $g(x)=f_{1}(L(x))$, where L is affine, is convex. Note: L is affine $\Leftrightarrow L(x)-L(0)$ is linear; e.g. $L(x)=A x+b$.
- $h: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, defined as $h(x)=\sum_{j=1}^{N} \alpha_{j} f_{j}(x)$, for $\alpha_{j}>0$, is convex.

A Little More on Convex Functions

Let $f_{1}, \ldots, f_{N}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be convex functions. Then

- $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, defined as $f(x)=\max \left\{f_{1}(x), \ldots, f_{N}(x)\right\}$, is convex.
- $g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, defined as $g(x)=f_{1}(L(x))$, where L is affine, is convex. Note: L is affine $\Leftrightarrow L(x)-L(0)$ is linear; e.g. $L(x)=A x+b$.
- $h: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, defined as $h(x)=\sum_{j=1}^{N} \alpha_{j} f_{j}(x)$, for $\alpha_{j}>0$, is convex.

An important function: the indicator of a set $C \subset \mathbb{R}^{n}$,

$$
\iota_{C}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}, \iota_{C}(x)= \begin{cases}0 & \Leftarrow x \in C \\ +\infty & \Leftarrow x \notin C\end{cases}
$$

If C is a closed convex set, ι_{C} is a l.s.c. convex function.

The Case of Differentiable Functions

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be twice differentiable and consider its Hessian matrix at x, denoted $\nabla^{2} f(x)$ (or $\left.H f(x)\right)$:

$$
\left(\nabla^{2} f(x)\right)_{i j}=\frac{\partial f}{\partial x_{i} \partial x_{j}}, \text { for } i, j=1, \ldots, n
$$

The Case of Differentiable Functions

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be twice differentiable and consider its Hessian matrix at x, denoted $\nabla^{2} f(x)($ or $H f(x))$:

$$
\left(\nabla^{2} f(x)\right)_{i j}=\frac{\partial f}{\partial x_{i} \partial x_{j}}, \text { for } i, j=1, \ldots, n
$$

- f is convex \Leftrightarrow its Hessian $\nabla^{2} f(x)$ is positive semidefinite \forall_{x}

The Case of Differentiable Functions

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be twice differentiable and consider its Hessian matrix at x, denoted $\nabla^{2} f(x)($ or $H f(x))$:

$$
\left(\nabla^{2} f(x)\right)_{i j}=\frac{\partial f}{\partial x_{i} \partial x_{j}}, \text { for } i, j=1, \ldots, n
$$

- f is convex \Leftrightarrow its Hessian $\nabla^{2} f(x)$ is positive semidefinite \forall_{x}
- f is strictly convex \Leftarrow its Hessian $\nabla^{2} f(x)$ is positive definite \forall_{x}

The Case of Differentiable Functions

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be twice differentiable and consider its Hessian matrix at x, denoted $\nabla^{2} f(x)($ or $H f(x))$:

$$
\left(\nabla^{2} f(x)\right)_{i j}=\frac{\partial f}{\partial x_{i} \partial x_{j}}, \text { for } i, j=1, \ldots, n
$$

- f is convex \Leftrightarrow its Hessian $\nabla^{2} f(x)$ is positive semidefinite \forall_{x}
- f is strictly convex \Leftarrow its Hessian $\nabla^{2} f(x)$ is positive definite \forall_{x}
- f is β-strongly convex \Leftrightarrow its Hessian $\nabla^{2} f(x) \succeq \beta I$, with $\beta>0, \forall_{x}$.

More on the Relationship Between ℓ_{1} and ℓ_{0}

Finding the sparsest solution is NP-hard (Muthukrishnan, 2005).

$$
\begin{aligned}
\widehat{w}= & \arg \min _{w}\|w\|_{0} \\
& \text { s. t. }\|A w-y\|_{2}^{2} \leq \delta
\end{aligned}
$$

More on the Relationship Between ℓ_{1} and ℓ_{0}

Finding the sparsest solution is NP-hard (Muthukrishnan, 2005).

$$
\begin{aligned}
\widehat{w}= & \arg \min _{w}\|w\|_{0} \\
& \text { s. t. }\|A w-y\|_{2}^{2} \leq \delta
\end{aligned}
$$

The related best subset selection problem is also NP-hard (Amaldi and Kann, 1998; Davis et al., 1997).

$$
\widehat{w}=\arg \min _{w}\|A w-y\|_{2}^{2}
$$

s. t. $\|w\|_{0} \leq \tau$

More on the Relationship Between ℓ_{1} and ℓ_{0}

Finding the sparsest solution is NP-hard (Muthukrishnan, 2005).

$$
\begin{aligned}
\widehat{w}= & \arg \min _{w}\|w\|_{0} \\
& \text { s. t. }\|A w-y\|_{2}^{2} \leq \delta
\end{aligned}
$$

The related best subset selection problem is also NP-hard (Amaldi and Kann, 1998; Davis et al., 1997).

$$
\widehat{w}=\arg \min _{w}\|A w-y\|_{2}^{2}
$$

s. t. $\|w\|_{0} \leq \tau$

Under conditions, replacing ℓ_{0} with ℓ_{1} yields "similar" results: see compressive sensing (CS) (Candès et al., 2006; Donoho, 2006)

The Ubiquitous ℓ_{1} Norm

- Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996) a.k.a. basis pursuit denoising (Chen et al., 1995):

$$
\min _{x} \frac{1}{2}\|A x-y\|_{2}^{2}+\tau\|x\|_{1} \text { or } \min _{x}\|A x-y\|_{2}^{2} \text { s.t. }\|x\|_{1} \leq \delta
$$

or, more generally,

$$
\min _{x} f(x)+\lambda\|x\|_{1} \text { or } \min _{x} f(x) \text { s.t. }\|x\|_{1} \leq \delta
$$

The Ubiquitous ℓ_{1} Norm

- Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996) a.k.a. basis pursuit denoising (Chen et al., 1995):

$$
\min _{x} \frac{1}{2}\|A x-y\|_{2}^{2}+\tau\|x\|_{1} \text { or } \min _{x}\|A x-y\|_{2}^{2} \text { s.t. }\|x\|_{1} \leq \delta
$$

or, more generally,

$$
\min _{x} f(x)+\lambda\|x\|_{1} \text { or } \min _{x} f(x) \text { s.t. }\|x\|_{1} \leq \delta
$$

- Widely used outside and much earlier than compressive sensing (statistics, signal processing, neural netowrks, ...).

The Ubiquitous

- Lasso (least al a.k.a. basis p

or, more gene
- Geology/geophysics
- Claerbout and Muir (1973)
- Taylor et al. (1979)
- Levy and Fullager (1981)
- Oldenburg et al. (1983)
- Santosa and Symes (1988)
- Radio astronomy
- Högbom (1974)
- Schwarz (1978)
- Fourier transform spectroscopy
s.t. $\|x\|_{1} \leq \delta$
- Kawata et al. (1983)
- Mammone (1983)
- Minami et al. (1985)
(Tibshirani, 1996)
$x \|_{1} \leq \delta$
- Widely used o (statistics, sig
- NMR spectroscopy
- Barkhuijsen (1985)
- Newman (1988)
- Medical ultrasound
- Papoulis and Chamzas (1979)

The Ubiquitous ℓ_{1} Norm

- Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996) a.k.a. basis pursuit denoising (Chen et al., 1995):

$$
\min _{x} \frac{1}{2}\|A x-y\|_{2}^{2}+\tau\|x\|_{1} \text { or } \min _{x}\|A x-y\|_{2}^{2} \text { s.t. }\|x\|_{1} \leq \delta
$$

or, more generally,

$$
\min _{x} f(x)+\lambda\|x\|_{1} \text { or } \min _{x} f(x) \text { s.t. }\|x\|_{1} \leq \delta
$$

- Widely used outside and much earlier than compressive sensing (statistics, signal processing, neural netowrks, ...).
- Many extensions: namely to express structured sparsity (more later).

The Ubiquitous ℓ_{1} Norm

- Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996) a.k.a. basis pursuit denoising (Chen et al., 1995):

$$
\min _{x} \frac{1}{2}\|A x-y\|_{2}^{2}+\tau\|x\|_{1} \text { or } \min _{x}\|A x-y\|_{2}^{2} \text { s.t. }\|x\|_{1} \leq \delta
$$

or, more generally,

$$
\min _{x} f(x)+\lambda\|x\|_{1} \text { or } \min _{x} f(x) \text { s.t. }\|x\|_{1} \leq \delta
$$

- Widely used outside and much earlier than compressive sensing (statistics, signal processing, neural netowrks, ...).
- Many extensions: namely to express structured sparsity (more later).
- Why does ℓ_{1} yield sparse solutions? (next slides)

The Ubiquitous ℓ_{1} Norm

- Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996) a.k.a. basis pursuit denoising (Chen et al., 1995):

$$
\min _{x} \frac{1}{2}\|A x-y\|_{2}^{2}+\tau\|x\|_{1} \text { or } \min _{x}\|A x-y\|_{2}^{2} \text { s.t. }\|x\|_{1} \leq \delta
$$

or, more generally,

$$
\min _{x} f(x)+\lambda\|x\|_{1} \text { or } \min _{x} f(x) \text { s.t. }\|x\|_{1} \leq \delta
$$

- Widely used outside and much earlier than compressive sensing (statistics, signal processing, neural netowrks, ...).
- Many extensions: namely to express structured sparsity (more later).
- Why does ℓ_{1} yield sparse solutions? (next slides)
- How to solve these problems? (this tutorial)

Why ℓ_{1} Yields Sparse Solution

$$
\begin{array}{clcc}
w^{*}=\begin{array}{ll}
\arg \min _{w} & \|A w-y\|_{2}^{2}
\end{array} \quad \text { vs } \quad w^{*}= & \arg \min _{w} & \|A w-y\|_{2}^{2} \\
\text { s.t. } & \|w\|_{2} \leq \delta & & \text { s.t. }
\end{array}\|w\|_{1} \leq \delta
$$

Why ℓ_{1} Yields Sparse Solution

The simplest problem with ℓ_{1} regularization

$$
\widehat{w}=\arg \min _{w} \frac{1}{2}(w-y)^{2}+\lambda|w|=\operatorname{soft}(y, \lambda)= \begin{cases}y-\lambda \Leftarrow y>\lambda \\ 0 & \Leftarrow|y| \leq \lambda \\ y+\lambda & \Leftarrow y<-\lambda\end{cases}
$$

Why ℓ_{1} Yields Sparse Solution

The simplest problem with ℓ_{1} regularization

$$
\widehat{w}=\arg \min _{w} \frac{1}{2}(w-y)^{2}+\lambda|w|=\operatorname{soft}(y, \lambda)= \begin{cases}y-\lambda \Leftarrow y>\lambda \\ 0 & \Leftarrow|y| \leq \lambda \\ y+\lambda & \Leftarrow y<-\lambda\end{cases}
$$

Why ℓ_{1} Yields Sparse Solution

The simplest problem with ℓ_{1} regularization

$$
\widehat{w}=\arg \min _{w} \frac{1}{2}(w-y)^{2}+\lambda|w|=\operatorname{soft}(y, \lambda)= \begin{cases}y-\lambda \Leftarrow y>\lambda \\ 0 & \Leftarrow|y| \leq \lambda \\ y+\lambda & \Leftarrow y<-\lambda\end{cases}
$$

...by the way, how is this solved? (more later).

Why ℓ_{1} Yields Sparse Solution

The simplest problem with ℓ_{1} regularization
$\widehat{w}=\arg \min _{w} \frac{1}{2}(w-y)^{2}+\lambda|w|=\operatorname{soft}(y, \lambda)= \begin{cases}y-\lambda & \Leftarrow y>\lambda \\ 0 & \Leftarrow|y| \leq \lambda \\ y+\lambda & \Leftarrow y<-\lambda\end{cases}$

...by the way, how is this solved? (more later).
Contrast with the squared ℓ_{2} (ridge) regularizer (linear scaling):

$$
\widehat{w}=\arg \min _{w} \frac{1}{2}(w-y)^{2}+\frac{\lambda}{2} w^{2}=\frac{1}{1+\lambda} y
$$

More on the Relationship Between ℓ_{1} and ℓ_{0}

The ℓ_{0} "norm" (number of non-zeros): $\|w\|_{0}=\left|\left\{i: w_{i} \neq 0\right\}\right|$. Not a norm, not convex, but in the simple case...
$\widehat{w}=\arg \min _{w} \frac{1}{2}(w-y)^{2}+\lambda|w|_{0}=\operatorname{hard}(y, \sqrt{2 \lambda})= \begin{cases}y & \Leftarrow|y|>\sqrt{2 \lambda} \\ 0 & \Leftarrow|y| \leq \sqrt{2 \lambda}\end{cases}$

More on the Relationship Between ℓ_{1} and ℓ_{0}

The ℓ_{0} "norm" (number of non-zeros): $\|w\|_{0}=\left|\left\{i: w_{i} \neq 0\right\}\right|$. Not a norm, not convex, but in the simple case...
$\widehat{w}=\arg \min _{w} \frac{1}{2}(w-y)^{2}+\lambda|w|_{0}=\operatorname{hard}(y, \sqrt{2 \lambda})= \begin{cases}y & \Leftarrow|y|>\sqrt{2 \lambda} \\ 0 & \Leftarrow|y| \leq \sqrt{2 \lambda}\end{cases}$

Another Application: Images

Natural images are well represented by a few coefficients in some bases.

- Images ($N \times M \equiv n$ pixels) are represented by vectors $x \in \mathbb{R}^{n}$

Another Application: Images

Natural images are well represented by a few coefficients in some bases.

- Images ($N \times M \equiv n$ pixels) are represented by vectors $x \in \mathbb{R}^{n}$
- Typical images have representations $x=W w$ that are sparse $\left(\|w\|_{0} \ll n\right)$ on some bases $\left(W^{T} W=W W^{T}=I\right)$, such as wavelets.

Original 1000×1000 image $x \in \mathbb{R}^{10^{6}} \quad$...only its 25000 largest coefficients.

Another Application: Images

Natural images are well represented by a few coefficients in some bases.

- Images ($N \times M \equiv n$ pixels) are represented by vectors $x \in \mathbb{R}^{n}$
- Typical images have representations $x=W w$ that are sparse $\left(\|w\|_{0} \ll n\right)$ on some bases $\left(W^{T} W=W W^{T}=I\right)$, such as wavelets.

Original 1000×1000 image $x \in \mathbb{R}^{10^{6}} \quad$...only its 25000 largest coefficients.

- Also (even more) true with an over-complete tight frame; W is "fat" (more columns than rows) and $W W^{T}=I$, but $W^{\top} W \neq I$.

Application to Image Deblurring/Deconvolution

blurred

restored

$\widehat{\mathbf{x}} \in \arg \min _{\mathbf{x}} \frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{y}\|_{2}^{2}+\tau\|\mathbf{x}\|_{1}$

Application to Magnetic Resonance Imaging

$$
\widehat{\mathbf{x}} \in \arg \min _{\mathbf{x}} \frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{y}\|_{2}^{2}+\tau\|\mathbf{x}\|_{1}
$$

A = MUW

discrete Fourier transform
 acquired slices in DFT domain
reconstruction $\mathbf{W} \widehat{\mathbf{x}}$

Machine/Statistical Learning: Linear Regression

Data N pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$, where $x_{i} \in \mathbb{R}^{d}$ (feature/variable vectors) and $y_{i} \in \mathbb{R}$ (outputs).

Goal: find "good" linear function: $\hat{y}=\sum_{j=1}^{d} w_{j} x_{j}+w_{d+1}=\left[x^{T} 1\right] w$

Machine/Statistical Learning: Linear Regression

Data N pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$, where $x_{i} \in \mathbb{R}^{d}$ (feature/variable vectors) and $y_{i} \in \mathbb{R}$ (outputs).

Goal: find "good" linear function: $\hat{y}=\sum_{j=1}^{d} w_{j} x_{j}+w_{d+1}=\left[x^{T} 1\right] w$
Assumption: data generated i.i.d. by some underlying distribution $P_{X, Y}$
Mean squared error: $\min _{w} \mathbb{E}\left(Y-\left[X^{T} 1\right] w\right)^{2} \quad$ impossible! $P_{X, Y}$ unknown

Machine/Statistical Learning: Linear Regression

Data N pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$, where $x_{i} \in \mathbb{R}^{d}$ (feature/variable vectors) and $y_{i} \in \mathbb{R}$ (outputs).

Goal: find "good" linear function: $\widehat{y}=\sum_{j=1}^{d} w_{j} x_{j}+w_{d+1}=\left[x^{T} 1\right] w$
Assumption: data generated i.i.d. by some underlying distribution $P_{X, Y}$
Mean squared error: $\min _{w} \mathbb{E}\left(Y-\left[X^{T} 1\right] w\right)^{2} \quad$ impossible! $P_{X, Y}$ unknown
Empirical error: $\min _{w} \frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\left[x_{i}^{T} 1\right] w\right)^{2}=\min _{w} \frac{1}{N}\|y-A w\|_{2}^{2}$,
design matrix: $A_{i j}=\left(x_{i}\right)_{j}\left(j\right.$-th component of i-th sample, $\left.A_{i(d+1)}=1\right)$

Machine/Statistical Learning: Linear Regression

Data N pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$, where $x_{i} \in \mathbb{R}^{d}$ (feature/variable vectors) and $y_{i} \in \mathbb{R}$ (outputs).

Goal: find "good" linear function: $\widehat{y}=\sum_{j=1}^{d} w_{j} x_{j}+w_{d+1}=\left[x^{T} 1\right] w$
Assumption: data generated i.i.d. by some underlying distribution $P_{X, Y}$
Mean squared error: $\min _{w} \mathbb{E}\left(Y-\left[X^{T} 1\right] w\right)^{2} \quad$ impossible! $P_{X, Y}$ unknown
Empirical error: $\min _{w} \frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\left[x_{i}^{T} 1\right] w\right)^{2}=\min _{w} \frac{1}{N}\|y-A w\|_{2}^{2}$,
design matrix: $A_{i j}=\left(x_{i}\right)_{j}\left(j\right.$-th component of i-th sample, $\left.A_{i(d+1)}=1\right)$
Regularization: $\min _{w}\|y-A w\|_{2}^{2}+\tau \psi(w)$

Machine/Statistical Learning: Linear Classification

Data N pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$, where $x_{i} \in \mathbb{R}^{d}$ (feature vectors) and $y_{i} \in\{-1,+1\}$ (labels).
Goal: find "good" linear classifier (i.e., find the optimal weights):

$$
\widehat{y}=\operatorname{sign}\left(\left[x^{T} 1\right] w\right)=\operatorname{sign}\left(w_{d+1}+\sum_{j=1}^{d} w_{j} x_{j}\right)
$$

Machine/Statistical Learning: Linear Classification

Data N pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$, where $x_{i} \in \mathbb{R}^{d}$ (feature vectors) and $y_{i} \in\{-1,+1\}$ (labels).
Goal: find "good" linear classifier (i.e., find the optimal weights):

$$
\widehat{y}=\operatorname{sign}\left(\left[x^{T} 1\right] w\right)=\operatorname{sign}\left(w_{d+1}+\sum_{j=1}^{d} w_{j} x_{j}\right)
$$

Assumption: data generated i.i.d. by some underlying distribution $P_{X, Y}$ Expected error: $\min _{w \in \mathbb{R}^{d+1}} \mathbb{E}\left(1_{Y\left(\left[X^{\top} 1\right] w\right)<0}\right)$ impossible! $P_{X, Y}$ unknown

Machine/Statistical Learning: Linear Classification

Data N pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$, where $x_{i} \in \mathbb{R}^{d}$ (feature vectors) and $y_{i} \in\{-1,+1\}$ (labels).
Goal: find "good" linear classifier (i.e., find the optimal weights):

$$
\widehat{y}=\operatorname{sign}\left(\left[x^{T} 1\right] w\right)=\operatorname{sign}\left(w_{d+1}+\sum_{j=1}^{d} w_{j} x_{j}\right)
$$

Assumption: data generated i.i.d. by some underlying distribution $P_{X, Y}$ Expected error: $\min _{w \in \mathbb{R}^{d+1}} \mathbb{E}\left(1_{Y\left(\left[X^{\top} 1\right] w\right)<0}\right)$ impossible! $P_{X, Y}$ unknown Empirical error (EE): $\min _{w} \frac{1}{N} \sum_{i=1}^{N} h(\underbrace{y_{i}\left(\left[x^{T} 1\right] w\right)}_{\text {margin }})$, where $h(z)=1_{z<0}$.

Machine/Statistical Learning: Linear Classification

Data N pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$, where $x_{i} \in \mathbb{R}^{d}$ (feature vectors) and $y_{i} \in\{-1,+1\}$ (labels).
Goal: find "good" linear classifier (i.e., find the optimal weights):

$$
\widehat{y}=\operatorname{sign}\left(\left[x^{T} 1\right] w\right)=\operatorname{sign}\left(w_{d+1}+\sum_{j=1}^{d} w_{j} x_{j}\right)
$$

Assumption: data generated i.i.d. by some underlying distribution $P_{X, Y}$ Expected error: $\min _{w \in \mathbb{R}^{d+1}} \mathbb{E}\left(1_{Y\left(\left[X^{\top} 1\right] w\right)<0}\right)$ impossible! $P_{X, Y}$ unknown
Empirical error (EE): $\min _{w} \frac{1}{N} \sum_{i=1}^{N} h(\underbrace{y_{i}\left(\left[x^{T} 1\right] w\right)}_{\text {margin }})$, where $h(z)=1_{z<0}$.
Convexification: EE neither convex nor differentiable (NP-hard problem). Solution: replace $h: \mathbb{R} \rightarrow\{0,1\}$ with convex loss $L: \mathbb{R} \rightarrow \mathbb{R}_{+}$.

Machine/Statistical Learning: Linear Classification

Criterion: $\min _{w} \underbrace{\sum_{i=1}^{N} L(\underbrace{y_{i}\left(w^{T} x_{i}+b\right)}_{\text {margin }})}_{f(w)}+\tau \psi(w)$
Regularizer: $\psi=\ell_{1} \Rightarrow$ encourage sparseness \Rightarrow feature selection Convex losses: $L: \mathbb{R} \rightarrow \mathbb{R}_{+}$is a (preferably convex) loss function.

Machine/Statistical Learning: Linear Classification

Criterion: $\min _{w} \underbrace{\sum_{i=1}^{N} L(\underbrace{y_{i}\left(w^{T} x_{i}+b\right)}_{\text {margin }})}_{f(w)}+\tau \psi(w)$
Regularizer: $\psi=\ell_{1} \Rightarrow$ encourage sparseness \Rightarrow feature selection
Convex losses: $L: \mathbb{R} \rightarrow \mathbb{R}_{+}$is a (preferably convex) loss function.

- Misclassification loss: $L(z)=1_{z<0}$
- Hinge loss: $L(z)=\max \{1-z, 0\}$
- Logistic loss: $L(z)=\frac{\log (1+\exp (-z))}{\log 2}$
- Squared loss: $L(z)=(z-1)^{2}$

Machine/Statistical Learning: General Formulation

This formulation covers a wide range of linear ML methods:

$$
\min _{w} \underbrace{\sum_{i=1}^{N} L\left(y_{i}\left(\left[x^{T} 1\right] w\right)\right)}_{f(w)}+\tau \psi(w)
$$

- Least squares regression: $L(z)=(z-1)^{2}, \psi(w)=0$.
- Ridge regression: $L(z)=(z-1)^{2}, \psi(w)=\|w\|_{2}^{2}$.
- Lasso regression: $L(z)=(z-1)^{2}, \psi(w)=\|w\|_{1}$
- Logistic regression: $L(z)=\log (1+\exp (-z))$ (ridge, if $\psi(w)=\|w\|_{2}^{2}$
- Sparse logistic regression: $L(z)=\log (1+\exp (-z)), \psi(w)=\|w\|_{1}$
- Support vector machines: $L(z)=\max \{1-z, 0\}, \psi(w)=\|w\|_{2}^{2}$
- Boosting: $L(z)=\exp (-z)$,
- ...

Machine/Statistical Learning: Nonlinear Problems

What about non-linear functions?
Simply use $\widehat{y}=\phi(x, w)=\sum_{j=1}^{D} w_{j} \phi_{j}(x)$, where $\phi_{j}: \mathbb{R}^{d} \rightarrow \mathbb{R}$
Essentially, nothing changes; computationally, a lot may change!

$$
\min _{w} \underbrace{\sum_{i=1}^{N} L\left(y_{i} \phi(x, w)\right)}_{f(w)}+\tau \psi(w)
$$

Key feature: $\phi(x, w)$ is still linear with respect to w, thus f inherits the convexity of L.

Examples: polynomials, radial basis functions, wavelets, splines, kernels,... Recover the linear case, letting $D=d+1, f_{j}(x)=x_{j}, \quad$ and $f_{d+1}=1$.

Structured Sparsity

ℓ_{1} regularization promotes sparsity
A very simple sparsity pattern: prefer models with small cardinality

Structured Sparsity

ℓ_{1} regularization promotes sparsity
A very simple sparsity pattern: prefer models with small cardinality
Can we promote less trivial sparsity patterns? How?

Structured Sparsity

ℓ_{1} regularization promotes sparsity
A very simple sparsity pattern: prefer models with small cardinality
Can we promote less trivial sparsity patterns? How?

Structured Sparsity

ℓ_{1} regularization promotes sparsity
A very simple sparsity pattern: prefer models with small cardinality
Can we promote less trivial sparsity patterns? How?

Group/structured regularization.

Structured Sparsity and Groups

Main goal: to promote structural patterns, not just penalize cardinality

Structured Sparsity and Groups

Main goal: to promote structural patterns, not just penalize cardinality
Group sparsity: discard/keep entire groups of features (Bach et al., 2012)

- density inside each group
- sparsity with respect to the groups which are selected
- choice of groups: prior knowledge about the intended sparsity patterns

Structured Sparsity and Groups

Main goal: to promote structural patterns, not just penalize cardinality
Group sparsity: discard/keep entire groups of features (Bach et al., 2012)

- density inside each group
- sparsity with respect to the groups which are selected
- choice of groups: prior knowledge about the intended sparsity patterns

Yields statistical gains if the assumption is correct (Stojnic et al., 2009)

Structured Sparsity and Groups

Main goal: to promote structural patterns, not just penalize cardinality
Group sparsity: discard/keep entire groups of features (Bach et al., 2012)

- density inside each group
- sparsity with respect to the groups which are selected
- choice of groups: prior knowledge about the intended sparsity patterns

Yields statistical gains if the assumption is correct (Stojnic et al., 2009)
Many applications:

- feature template selection (Martins et al., 2011)
- multi-task learning (Caruana, 1997; Obozinski et al., 2010)
- learning the structure of graphical models (Schmidt and Murphy, 2010)

"Grid" Sparsity

For feature spaces that can be arranged as a grid (examples next)

"Grid" Sparsity

For feature spaces that can be arranged as a grid (examples next)

For feature spaces that can be arranged as a grid (examples next)

Goal: push entire columns to have zero weights
The groups are the columns of the grid

Example: Sparsity with Multiple Classes

In multi-class (more than just 2 classes) classification, a common formulation is

$$
\hat{y}=\arg \max _{y \in\{1, \ldots, K\}} x^{T} w_{y}
$$

Weight vector $w=\left(w_{1}, \ldots, w_{K}\right) \in \mathbb{R}^{K d}$ has a natural group/grid organization:

Example: Sparsity with Multiple Classes

In multi-class (more than just 2 classes) classification, a common formulation is

$$
\widehat{y}=\arg \max _{y \in\{1, \ldots, K\}} x^{T} w_{y}
$$

Weight vector $w=\left(w_{1}, \ldots, w_{K}\right) \in \mathbb{R}^{K d}$ has a natural group/grid organization:

sparse

Simple sparsity is wasteful: may still need to keep all the features Structured sparsity: discard some input features (feature selection)

Example: Multi-Task Learning

Same thing, except now rows are tasks and columns are features Example: simultaneous regression (seek function into $\mathbb{R}^{d} \rightarrow \mathbb{R}^{b}$)

Example: Multi-Task Learning

Same thing, except now rows are tasks and columns are features Example: simultaneous regression (seek function into $\mathbb{R}^{d} \rightarrow \mathbb{R}^{b}$)

Goal: discard features that are irrelevant for all tasks
Approach: one group per feature (Caruana, 1997; Obozinski et al., 2010)

Example: Magnetoencephalograpy (MEG)

Group: localized cortex area at localized time period (Bolstad et al., 2009)

Group Sparsity

$\square_{\square}^{\square} \square_{\square}^{\square}$ ■ ロ

Group Sparsity

- D features
- M groups G_{1}, \ldots, G_{M}, each $G_{m} \subseteq\{1, \ldots, D\}$
- parameter subvectors $x_{G_{1}}, \ldots, x_{G_{M}}$

Group Sparsity

$$
\psi(x)=\sum_{m=1}^{M}\left\|x_{G_{m}}\right\|_{2}
$$

Group Sparsity

- Intuitively: the ℓ_{1} norm of the ℓ_{2} norms
- Technically, still a norm (called a mixed norm, denoted $\ell_{2,1}$)

Lasso versus group-Lasso

$$
\Omega(\boldsymbol{w})=\left|w_{1}\right|+\left|w_{2}\right|+\left|w_{3}\right|
$$

Lasso versus group-Lasso

Composite Absolute Penalties

A mixed-norm regularization:

$$
\psi(x)=\left(\sum_{m=1}^{M}\left\|x_{m}\right\|_{q}^{r}\right)^{1 / r}
$$

The r-norm of the q-norms $(r \geq 1, q \geq 1)$
Technically, this is also a norm, called a mixed norm, denoted $\ell_{q, r}$

Composite Absolute Penalties

A mixed-norm regularization:

$$
\psi(x)=\left(\sum_{m=1}^{M}\left\|x_{m}\right\|_{q}^{r}\right)^{1 / r}
$$

The r-norm of the q-norms $(r \geq 1, q \geq 1)$
Technically, this is also a norm, called a mixed norm, denoted $\ell_{q, r}$

- The most common choice: $\ell_{2,1}$ norm
- Another frequent choice: $\ell_{\infty, 1}$ norm (Quattoni et al., 2009; Graça et al., 2009; Eisenstein et al., 2011; Wright et al., 2009)

Three Scenarios

- Non-overlapping Groups
- Tree-structured Groups
- Graph-structured Groups

Non-overlapping Groups

Assume that G_{1}, \ldots, G_{M} (where $G_{m} \subset\{1, \ldots, d\}$) constitute a partition:

$$
\bigcup_{i=1}^{M} G_{m}=\{1, \ldots, d\} \quad \text { and } \quad i \neq j \Rightarrow G_{i} \cap G_{j}=\emptyset
$$

Non-overlapping Groups

Assume that G_{1}, \ldots, G_{M} (where $G_{m} \subset\{1, \ldots, d\}$) constitute a partition:

$$
\begin{gathered}
\bigcup_{i=1}^{M} G_{m}=\{1, \ldots, d\} \quad \text { and } \quad i \neq j \Rightarrow G_{i} \cap G_{j}=\emptyset \\
\psi(x)=\sum_{m=1}^{M} \lambda_{m}\left\|x_{G_{m}}\right\|_{2}
\end{gathered}
$$

Trivial choices of groups recover unstructured regularizers:

Non-overlapping Groups

Assume that G_{1}, \ldots, G_{M} (where $G_{m} \subset\{1, \ldots, d\}$) constitute a partition:

$$
\bigcup_{i=1}^{M} G_{m}=\{1, \ldots, d\} \quad \text { and } \quad i \neq j \Rightarrow G_{i} \cap G_{j}=\emptyset
$$

$$
\psi(x)=\sum_{m=1}^{M} \lambda_{m}\left\|x_{G_{m}}\right\|_{2}
$$

Trivial choices of groups recover unstructured regularizers:

- ℓ_{2}-regularization: one large group $G_{1}=\{1, \ldots, d\}$
- ℓ_{1}-regularization: d singleton groups $G_{m}=\{m\}$

Non-overlapping Groups

Assume that G_{1}, \ldots, G_{M} (where $G_{m} \subset\{1, \ldots, d\}$) constitute a partition:

$$
\bigcup_{i=1}^{M} G_{m}=\{1, \ldots, d\} \quad \text { and } \quad i \neq j \Rightarrow G_{i} \cap G_{j}=\emptyset
$$

$$
\psi(x)=\sum_{m=1}^{M} \lambda_{m}\left\|x_{G_{m}}\right\|_{2}
$$

Trivial choices of groups recover unstructured regularizers:

- ℓ_{2}-regularization: one large group $G_{1}=\{1, \ldots, d\}$
- ℓ_{1}-regularization: d singleton groups $G_{m}=\{m\}$

Examples of non-trivial groups:

- label-based groups
- task-based groups

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other \Rightarrow hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other \Rightarrow hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other \Rightarrow hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

-

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other \Rightarrow hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other \Rightarrow hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other \Rightarrow hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

- What is the sparsity pattern?

Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other \Rightarrow hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

- What is the sparsity pattern?
- If a group is discarded, all its descendants are also discarded

Matrix Inference Problems

Sparsest solution:

- From $B x=b \in \mathbb{R}^{p}$, find
$x \in \mathbb{R}^{n}(p<n)$.
- $\min _{x}\|x\|_{0}$ s.t. $B x=b$
- Yields exact solution, under some conditions.

Matrix Inference Problems

Sparsest solution:

- From $B x=b \in \mathbb{R}^{p}$, find $x \in \mathbb{R}^{n}(p<n)$.
- $\min _{x}\|x\|_{0}$ s.t. $B x=b$
- Yields exact solution, under some conditions.

Lowest rank solution:

- From $\mathcal{B}(X)=b \in \mathbb{R}^{p}$, find $X \in \mathbb{R}^{m \times n}(p<m n)$.
- $\min _{X} \operatorname{rank}(X)$ s.t. $\mathcal{B}(X)=b$
- Yields exact solution, under some conditions.

Both NP-hard (in general); the same is true of noisy versions:

$$
\min _{X \in \mathbb{R}^{m \times n}} \operatorname{rank}(X) \text { s.t. }\|\mathcal{B}(X)-b\|_{2}^{2}
$$

Matrix Inference Problems

Sparsest solution:

- From $B x=b \in \mathbb{R}^{p}$, find $x \in \mathbb{R}^{n}(p<n)$.
- $\min _{x}\|x\|_{0}$ s.t. $B x=b$
- Yields exact solution, under some conditions.

Lowest rank solution:

- From $\mathcal{B}(X)=b \in \mathbb{R}^{p}$, find $X \in \mathbb{R}^{m \times n}(p<m n)$.
- $\min _{X} \operatorname{rank}(X)$ s.t. $\mathcal{B}(X)=b$
- Yields exact solution, under some conditions.

Both NP-hard (in general); the same is true of noisy versions:

$$
\min _{X \in \mathbb{R}^{m \times n}} \operatorname{rank}(X) \text { s.t. }\|\mathcal{B}(X)-b\|_{2}^{2}
$$

Under some conditions, the same solution is obtained by replacing $\operatorname{rank}(X)$ by the nuclear norm $\|X\|_{*}$ (as any norm, it is convex) (Recht et al., 2010)

Matrix Nuclear Norm (and Other Norms)

- Also known as trace norm; the ℓ_{1}-type norm for matrices $X \in \mathbb{R}^{m \times n}$
- Definition: $\|X\|_{*}=\operatorname{trace}\left(\sqrt{X^{\top} X}\right)=\sum_{i=1}^{\min \{m, n\}} \sigma_{i}$, the σ_{i} are the singular values of X.

Matrix Nuclear Norm (and Other Norms)

- Also known as trace norm; the ℓ_{1}-type norm for matrices $X \in \mathbb{R}^{m \times n}$
- Definition: $\|X\|_{*}=\operatorname{trace}\left(\sqrt{X^{\top} X}\right)=\sum_{i=1}^{\min \{m, n\}} \sigma_{i}$, the σ_{i} are the singular values of X.
- Particular case of Schatten q-norm: $\|X\|_{q}=\left(\sum_{i=1}^{\min \{m, n\}}\left(\sigma_{i}\right)^{q}\right)^{1 / q}$.

Matrix Nuclear Norm (and Other Norms)

- Also known as trace norm; the ℓ_{1}-type norm for matrices $X \in \mathbb{R}^{m \times n}$
- Definition: $\|X\|_{*}=\operatorname{trace}\left(\sqrt{X^{T} X}\right)=\sum_{i=1}^{\min \{m, n\}} \sigma_{i}$, the σ_{i} are the singular values of X.
- Particular case of Schatten q-norm: $\|X\|_{q}=\left(\sum_{i=1}^{\min \{m, n\}}\left(\sigma_{i}\right)^{q}\right)^{1 / q}$.
- Two other notable Schatten norms:
- Frobenius norm: $\|X\|_{2}=\|X\|_{F}=\sqrt{\sum_{i=1}^{\min \{m, n\}}\left(\sigma_{i}\right)^{2}}=\sqrt{\sum_{i, i} X_{i, j}^{2}}$
- Spectral norm: $\|X\|_{\infty}=\max \left\{\sigma_{1}, \ldots, \sigma_{\min \{m, n\}}\right\}$

Nuclear Norm Regularization

Tikhonov formulation: $\min _{X} \underbrace{\|\mathcal{B}(X)-b\|_{2}^{2}}_{f(X)}+\underbrace{\tau\|X\|_{*}}_{\tau \psi(X)}$

Nuclear Norm Regularization

Tikhonov formulation: $\min _{X} \underbrace{\|\mathcal{B}(X)-b\|_{2}^{2}}_{f(X)}+\underbrace{\tau\|X\|_{*}}_{\tau \psi(X)}$
Linear observations: $\mathcal{B}: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p}, \quad(\mathcal{B}(X))_{i}=\left\langle B_{(i)}, X\right\rangle$,

$$
B_{(i)} \in \mathbb{R}^{m \times n}, \text { and }\langle B, X\rangle=\sum_{i j} B_{i j} X_{i j}=\operatorname{trace}\left(B^{T} X\right)
$$

Nuclear Norm Regularization

Tikhonov formulation: $\min _{X} \underbrace{\|\mathcal{B}(X)-b\|_{2}^{2}}_{f(X)}+\underbrace{\tau\|X\|_{*}}_{\tau \psi(X)}$
Linear observations: $\mathcal{B}: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p}, \quad(\mathcal{B}(X))_{i}=\left\langle B_{(i)}, X\right\rangle$,

$$
B_{(i)} \in \mathbb{R}^{m \times n}, \text { and }\langle B, X\rangle=\sum_{i j} B_{i j} X_{i j}=\operatorname{trace}\left(B^{T} X\right)
$$

Particular case: matrix completion, each matrix $B_{(i)}$ has one 1 and is zero everywhere else.

Nuclear Norm Regularization

Tikhonov formulation: $\min _{X} \underbrace{\|\mathcal{B}(X)-b\|_{2}^{2}}_{f(X)}+\underbrace{\tau\|X\|_{*}}_{\tau \psi(X)}$
Linear observations: $\mathcal{B}: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p}, \quad(\mathcal{B}(X))_{i}=\left\langle B_{(i)}, X\right\rangle$,

$$
B_{(i)} \in \mathbb{R}^{m \times n}, \text { and }\langle B, X\rangle=\sum_{i j} B_{i j} X_{i j}=\operatorname{trace}\left(B^{T} X\right)
$$

Particular case: matrix completion, each matrix $B_{(i)}$ has one 1 and is zero everywhere else.

Why does the nuclear norm favor low rank solutions?

Nuclear Norm Regularization

Tikhonov formulation: $\operatorname{mix}_{X} \underbrace{\|\mathcal{B}(X)-b\|_{2}^{2}}_{f(X)}+\underbrace{\tau\|X\|_{*}}_{\tau \psi(X)}$
Linear observations: $\mathcal{B}: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p}, \quad(\mathcal{B}(X))_{i}=\left\langle B_{(i)}, X\right\rangle$,

$$
B_{(i)} \in \mathbb{R}^{m \times n}, \text { and }\langle B, X\rangle=\sum_{i j} B_{i j} X_{i j}=\operatorname{trace}\left(B^{T} X\right)
$$

Particular case: matrix completion, each matrix $B_{(i)}$ has one 1 and is zero everywhere else.

Why does the nuclear norm favor low rank solutions? Let $Y=U \wedge V^{T}$ be the singular value decomposition, where $\Lambda=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{\min \{m, n\}}\right)$; then

$$
\arg \min _{X} \frac{1}{2}\|Y-X\|_{F}^{2}+\tau\|X\|_{*}=U \underbrace{\operatorname{soft}(X, \tau)}_{\text {may yield zeros }} V^{T}
$$

...singular value thresholding (Ma et al., 2011; Cai et al., 2010)

Another Matrix Inference Problem: Inverse Covariance

Consider n samples $y_{1}, \ldots, y_{n} \in \mathbb{R}^{d}$ of a Gaussian r.v. $Y \sim \mathcal{N}(\mu, C)$; the log-likelihood is

$$
L(P)=\log p\left(y_{1}, \ldots, y_{n} \mid P\right)=\log \operatorname{det}(P)-\operatorname{trace}(S P)+\text { constant }
$$

where $S=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\mu\right)\left(y_{i}-\mu\right)^{T}$ and $P=C^{-1}$ (inverse covariance).

Another Matrix Inference Problem: Inverse Covariance

Consider n samples $y_{1}, \ldots, y_{n} \in \mathbb{R}^{d}$ of a Gaussian r.v. $Y \sim \mathcal{N}(\mu, C)$; the log-likelihood is

$$
L(P)=\log p\left(y_{1}, \ldots, y_{n} \mid P\right)=\log \operatorname{det}(P)-\operatorname{trace}(S P)+\text { constant }
$$

where $S=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\mu\right)\left(y_{i}-\mu\right)^{T}$ and $P=C^{-1}$ (inverse covariance).
Zeros in P reveal conditional independencies between components of Y :

$$
P_{i j}=0 \Leftrightarrow Y_{i} \Perp Y_{j} \mid\left\{Y_{k}, k \neq i, j\right\}
$$

...exploited to infer (in)dependencies among Gaussian variables. Widely used in computational biology and neuroscience, social network analysis, ...

Another Matrix Inference Problem: Inverse Covariance

Consider n samples $y_{1}, \ldots, y_{n} \in \mathbb{R}^{d}$ of a Gaussian r.v. $Y \sim \mathcal{N}(\mu, C)$; the log-likelihood is

$$
L(P)=\log p\left(y_{1}, \ldots, y_{n} \mid P\right)=\log \operatorname{det}(P)-\operatorname{trace}(S P)+\text { constant }
$$

where $S=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\mu\right)\left(y_{i}-\mu\right)^{T}$ and $P=C^{-1}$ (inverse covariance).
Zeros in P reveal conditional independencies between components of Y :

$$
P_{i j}=0 \Leftrightarrow Y_{i} \Perp Y_{j} \mid\left\{Y_{k}, k \neq i, j\right\}
$$

...exploited to infer (in)dependencies among Gaussian variables. Widely used in computational biology and neuroscience, social network analysis, ...

Sparsity (presence of zeros) in P is encouraged by solving

$$
\min _{P \succ 0} \underbrace{-\log \operatorname{det}(P)+\operatorname{trace}(S P)}_{f(P)}+\tau \underbrace{\|\operatorname{vect}(P)\|_{1}}_{\psi(P)}
$$

where $\operatorname{vect}(P)=\left[P_{1,1}, \ldots, P_{d, d}\right]^{T}$.

Atomic-Norm Regularization

Key concept in sparse modeling: synthesize "object" using a few atoms:

$$
x=\sum_{i=1}^{|\mathcal{A}|} c_{i} a_{i}
$$

- \mathcal{A} is the set of atoms (the atomic set), or building blocks.
- $c_{i} \geq 0$ are weights; x is simple/sparse object $\Rightarrow\|c\|_{0} \ll|\mathcal{A}|$
- Formally, \mathcal{A} is a compact subset of \mathbb{R}^{n}

Atomic-Norm Regularization

Key concept in sparse modeling: synthesize "object" using a few atoms:

$$
x=\sum_{i=1}^{|\mathcal{A}|} c_{i} a_{i}
$$

- \mathcal{A} is the set of atoms (the atomic set), or building blocks.
- $c_{i} \geq 0$ are weights; x is simple/sparse object $\Rightarrow\|c\|_{0} \ll|\mathcal{A}|$
- Formally, \mathcal{A} is a compact subset of \mathbb{R}^{n}

The (Minkowski) gauge of \mathcal{A} is:

$$
\|x\|_{\mathcal{A}}=\inf \{t>0: x \in t \operatorname{conv}(\mathcal{A})\}
$$

Assuming that \mathcal{A} centrally symmetry about the origin $(a \in \mathcal{A} \Rightarrow-a \in \mathcal{A}),\|\cdot\|_{\mathcal{A}}$ is a norm, called the atomic norm
Chandrasekaran et al. (2012).

Atomic-Norm Regularization

The atomic norm

$$
\begin{aligned}
\|x\|_{\mathcal{A}} & =\inf \{t>0: x \in t \operatorname{conv}(\mathcal{A})\} \\
& =\inf \left\{\sum_{i=1}^{|\mathcal{A}|} c_{i}: x=\sum_{i=1}^{|\mathcal{A}|} c_{i} a_{i}, c_{i} \geq 0\right\}
\end{aligned}
$$

...assuming that the centroid of \mathcal{A} is at the origin.

Atomic-Norm Regularization

The atomic norm

$$
\begin{aligned}
\|x\|_{\mathcal{A}} & =\inf \{t>0: x \in t \operatorname{conv}(\mathcal{A})\} \\
& =\inf \left\{\sum_{i=1}^{|\mathcal{A}|} c_{i}: x=\sum_{i=1}^{|\mathcal{A}|} c_{i} a_{i}, c_{i} \geq 0\right\}
\end{aligned}
$$

...assuming that the centroid of \mathcal{A} is at the origin.
Example: the ℓ_{1} norm as an atomic norm

- $\mathcal{A}=\left\{\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -1\end{array}\right],\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right\}$

Atomic Norms: More Examples

Examples with easy forms:

- sparse vectors

$$
\begin{aligned}
& \mathcal{A}=\left\{ \pm e_{i}\right\}_{i=1}^{N} \\
& \operatorname{conv}(\mathcal{A})=\text { cross-polytope } \\
& \|x\|_{\mathcal{A}}=\|x\|_{1}
\end{aligned}
$$

- low-rank matrices

$$
\begin{aligned}
& \mathcal{A}=\left\{A: \operatorname{rank}(A)=1,\|A\|_{F}=1\right\} \\
& \operatorname{conv}(\mathcal{A})=\text { nuclear norm ball } \\
& \|x\|_{\mathcal{A}}=\|x\|_{\star}
\end{aligned}
$$

- binary vectors

$$
\begin{aligned}
& \mathcal{A}=\{ \pm 1\}^{N} \\
& \operatorname{conv}(\mathcal{A})=\text { hypercube } \\
& \|x\|_{\mathcal{A}}=\|x\|_{\infty}
\end{aligned}
$$

Atomic-Norm Regularization

Given an atomic set \mathcal{A}, we can adopt an Ivanov formulation

$$
\min f(x) \text { s.t. }\|x\|_{\mathcal{A}} \leq \delta
$$

(for some $\delta>0$) tends to recover x with sparse atomic representation.

Atomic-Norm Regularization

Given an atomic set \mathcal{A}, we can adopt an Ivanov formulation

$$
\min f(x) \text { s.t. }\|x\|_{\mathcal{A}} \leq \delta
$$

(for some $\delta>0$) tends to recover x with sparse atomic representation.
Can formulate algorithms for the various special cases - but is a general approach available for this formulation?

Atomic-Norm Regularization

Given an atomic set \mathcal{A}, we can adopt an Ivanov formulation

$$
\min f(x) \text { s.t. }\|x\|_{\mathcal{A}} \leq \delta
$$

(for some $\delta>0$) tends to recover x with sparse atomic representation.
Can formulate algorithms for the various special cases - but is a general approach available for this formulation?

Yes! The conditional gradient (more later.)

Summary

- Many inference, learning, signal/image processing problems can be formulated as optimization problems.
- Sparsity-inducing regularizers play an important role in these problems
- There are several way to induce sparsity
- It is possible to formulate structured sparsity
- It is possible to extend the sparsity rationale to other objects, namely matrices
- Atomic norms provide a unified framework for sparsity/simplicity regularization

References I

Amaldi, E. and Kann, V. (1998). On the approximation of minimizing non zero variables or unsatisfied relations in linear systems. Theoretical Computer Science, 209:237-260.
Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. (2012). Structured sparsity through convex optimization. Statistical Science, 27:450-468.
Bakin, S. (1999). Adaptive regression and model selection in data mining problems. PhD thesis, Australian National University.
Bolstad, A., Veen, B. V., and Nowak, R. (2009). Space-time event sparse penalization for magnetoelectroencephalography. Neurolmage, 46:1066-1081.
Cai, J.-F., Candès, E., and Shen, Z. (2010). A singular value thresholding algorithm for matrix completion. SIAM JOurnal on Optimization, 20:1956-1982.
Candès, E., Romberg, J., and Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52:489-509.
Caruana, R. (1997). Multitask learning. Machine Learning, 28(1):41-75.
Chandrasekaran, V., Recht, B., Parrilo, P., and Willsky, A. (2012). The convex geometry of linear inverse problems. Foundations of Computational Mathematics, 12:805-849.
Chen, S., Donoho, D., and Saunders, M. (1995). Atomic decomposition by basis pursuit. Technical report, Department of Statistics, Stanford University.

References II

Davis, G., Mallat, S., and Avellaneda, M. (1997). Greedy adaptive approximation. Journal of Constructive Approximation, 13:57-98.
Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52:1289-1306.
Eisenstein, J., Smith, N. A., and Xing, E. P. (2011). Discovering sociolinguistic associations with structured sparsity. In Proc. of ACL.
Graça, J., Ganchev, K., Taskar, B., and Pereira, F. (2009). Posterior vs. parameter sparsity in latent variable models. Advances in Neural Information Processing Systems.
Kim, S. and Xing, E. (2010). Tree-guided group lasso for multi-task regression with structured sparsity. In Proc. of ICML.
Ma, S., Goldfarb, D., and Chen, L. (2011). Fixed point and Bregman iterative methods for matrix rank minimization. Mathematical Programming (Series A), 128:321-353.
Mairal, J., Jenatton, R., Obozinski, G., and Bach, F. (2010). Network flow algorithms for structured sparsity. In Advances in Neural Information Processing Systems.
Martins, A. F. T., Smith, N. A., Aguiar, P. M. Q., and Figueiredo, M. A. T. (2011). Structured Sparsity in Structured Prediction. In Proc. of Empirical Methods for Natural Language Processing.
Muthukrishnan, S. (2005). Data Streams: Algorithms and Applications. Now Publishers, Boston, MA.

References III

Obozinski, G., Taskar, B., and Jordan, M. (2010). Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing, 20(2):231-252.
Quattoni, A., Carreras, X., Collins, M., and Darrell, T. (2009). An efficient projection for $I_{1, \infty}$ regularization. In Proc. of ICML.
Recht, B., Fazel, M., and Parrilo, P. (2010). Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 52:471-501.
Schmidt, M. and Murphy, K. (2010). Convex structure learning in log-linear models: Beyond pairwise potentials. In Proc. of AISTATS.
Stojnic, M., Parvaresh, F., and Hassibi, B. (2009). On the reconstruction of block-sparse signals with an optimal number of measurements. Signal Processing, IEEE Transactions on, 57(8):3075-3085.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B., pages 267-288.
Wright, S., Nowak, R., and Figueiredo, M. (2009). Sparse reconstruction by separable approximation. IEEE Transactions on Signal Processing, 57:2479-2493.
Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society (B), 68(1):49.
Zhao, P., Rocha, G., and Yu, B. (2009). Grouped and hierarchical model selection through composite absolute penalties. Annals of Statistics, 37(6A):3468-3497.

