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A B S T R A C T

We propose and evaluate several deep network architectures for measuring the simi-
larity between sketches and photographs, within the context of the sketch based image
retrieval (SBIR) task. We study the ability of our networks to generalize across diverse
object categories from limited training data, and explore in detail strategies for weight
sharing, pre-processing, data augmentation and dimensionality reduction. In addition
to a detailed comparative study of network configurations, we contribute by describing
a hybrid multi-stage training network that exploits both contrastive and triplet networks
to exceed state of the art performance on several SBIR benchmarks by a significant
margin.
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1. Introduction1

Sketches are an intuitive modality for communicating every-2

day concepts, and are finding increased application on modern3

touch-screen interfaces (e. g. on tablets, phones) where gestu-4

ral interaction is natural. Such devices are now the platform on5

which the majority of today’s visual content is consumed, mo-6

tivating research into sketch as a medium for searching images7

and video.8

This paper addresses the problem of sketch based image9

retrieval (SBIR); searching a collection of photographs (im-10

ages) for a particular visual concept using a free-hand sketched11

query. We explore SBIR from the perspective of a cross-domain12
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modelling problem, in which a low dimensional embedding is 13

learned between the space of sketches and photographs. Tradi- 14

tionally, SBIR has been addressed using sparse feature extrac- 15

tion and dictionary learning, following the successful applica- 16

tion of the same to recognition and search in natural images 17

[1, 2, 3]. Deep convolutional neural networks (CNNs) have 18

since gained traction as a powerful and flexible tool for machine 19

perception problems [4], and recently have been explored for 20

SBIR particularly within fine-grain retrieval tasks, e.g. to find 21

a specific shoe within a dataset of shoes [5, 6]. Despite early, 22

promising results, it is unclear how suitable embeddings learned 23

by these multi-branch networks are for generalizing across ob- 24

ject categories [3, 2]. For example, enabling a user to search for 25

visual attributes within datasets containing diverse objects (e. g. 26
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a specific furniture form, a spotted dog, or particular building1

structure); a problem explored more extensively by prior work2

[2, 3, 7].3

The technical contributions of this paper are two-fold. First,4

we present a comprehensive investigation of triplet embedding5

strategies evaluating these against popular SBIR benchmarks6

(Flickr15k [3], TU-Berlin [2]). In the spirit of recent ‘details’7

papers studying deep networks for object recognition [8], we8

explore appropriate CNN architectures, weight sharing schemes9

and training methodologies to learn a low-dimensional embed-10

ding for the representation of both sketches and photographs —11

in practical terms, a space amenable to fast approximate nearest12

neighbor (ANN) search (e. g. L2 norm) for SBIR. Second, we13

describe a novel triplet architecture and training methodology14

capable of generalizing across hundreds of object categories,15

and show this to outperform existing SBIR methods by a sig-16

nificant margin on leading benchmarks [3, 2].17

Concretely, we explore several important questions around18

e�ective learning of deep representations for SBIR:19

1. Generalization: Given the diversity of visual concepts20

in the wild (∼105 categories) and the challenges of annotating21

large sketch datasets (current best ∼102 categories [2]) how well22

can a network generalize beyond its training to unseen sketched23

object categories? Are class diversity and volume of exemplars24

equally important?25

2. Input Modality: SBIR and the related task of sketched26

image classification variously employ edge extraction as a pre-27

processing step to align the statistics of sketch and photo dis-28

tributions. Is this a beneficial strategy when learning a SBIR29

feature embedding?30

3. Architecture: Recent exploration of SBIR has indicated31

triplet loss CNNs as a promising archetype for SBIR embed-32

ding, however what kind of loss objective should be considered33

and where, and which weight sharing strategies are most ef-34

fective? What is the best way to enforce a low dimensional35

embedding for e�cient SBIR indexing?36

2. Related Work and Contributions 37

Sketch based Image Retrieval (SBIR) began to gain momen- 38

tum in the early nineties with color-blob based query systems 39

such as Flickner et al.’s QBIC [9] that matched coarse attributes 40

of color, shape and texture using region adjacency graphs. Sev- 41

eral global image descriptors for matching blob based queries 42

were subsequently proposed, using spectral signatures derived 43

from Haar Wavelets [10] and the Short-Time Fourier Transform 44

[11]. This early wave of SBIR systems was complemented in 45

the late nineties by algorithms accepting line-art sketches, more 46

closely resembling the free-hand sketches casually generated by 47

lay users in the act of sketching a throw-away query [12]. Such 48

systems are characterised by their optimization based match- 49

ing approach; fitting the sketch under a deformable model to 50

measure the support for sketched structure within each photo- 51

graph in the database [13, 14]. Despite good accuracy, such ap- 52

proaches are slow and scale at best linearly. It was not until the 53

2010 decade that global image descriptors were derived from 54

line-art sketches, enabling more scalable indexing solutions. 55

2.1. SBIR with shallow features 56

Mirroring the success of gradient domain features and dictio- 57

nary learning methods in photo retrieval, both Eitz et al. [15] 58

and Hu et al. [1] extended Bag of Visual Words (BoVW) to 59

SBIR, also proposing the Flickr15k benchmark [3]. Sparse fea- 60

tures including the Structure Tensor [16], SHoG [15], Gradient 61

Field Histogram of Oriented Gradients (GF-HOG) [3] and its 62

extended version [17] are extracted from images pre-processed 63

via Canny edge detection. Chamfer Matching was employed 64

in Mindfinder [18], later adopted by Sun et al. [19] for scal- 65

able SBIR indexing billions of images. Qi et al. [20] imple- 66

mented an alternative edge detection pre-process delivering a 67

performance gain in cluttered scenes. Mid-level features were 68

explored through the HELO and key-shapes schemes of Saave- 69

dra and Barrios [21, 7, 22]. Their latest work [7] uses learned 70

key-shapes and leads the shallow learning approaches. 71

2.2. SBIR with deep networks 72

SketchANet [23] was among the earliest deep networks 73

for sketch, exploring recognition (rather than search) using a 74
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single-branch network resembling a short-form AlexNet [4].1

SketchANet forms a component of the very recent work of2

Bhattacharjeeet al. [24], coupled with a complex pipeline in-3

cluding object proposals, and query expansion. Although we4

also explored SketchANet, and compare with several other con-5

temporary architectures which we show yield superior perfor-6

mance in a triplet framework (Sec. 4).7

An early work exploring multi-branch networks for sketch8

retrieval (of 3D objects) was the contrastive loss network of9

Wanget al. [25] which independently learned branch weights10

to bridge the domains of sketch and 2D renderings of silhou-11

ette edges. In a recent short paper, Qiet al. [26] also propose12

a two-branch Siamese network with contrastive loss. Their re-13

sults, although comparable with other methods using shallow14

features, are still far behind state-of-the-art [24, 6] by a large15

margin. As we show later, learning a single function to map16

disparate domains to the search space appears to under-perform17

designs where branch weights are learned independently or18

semi-independently.19

Triplet CNNs employ three branches [27]: (i) an anchor20

branch, which models the reference object, (ii) one branch rep-21

resenting positive examples (which should be similar to the22

anchor) and (iii) another modeling negative examples (which23

should di� er from the anchor). The triplet loss function is re-24

sponsible for guiding the training stage considering the rela-25

tionship between the three models. Triplet CNNs have recently26

been explored for face identi�cation [28], tracking [29], photo-27

graphic visual search in[27, 30] and for sketched queries in or-28

der to re�ne search within a single object class (e. g. �ne-grain29

search within a dataset of shoes) [5]. Similarly, a �ne-grained30

approach to SBIR was adopted by the recent Sketchy system of31

Sangkloyet al. [6] in which careful reproduction of stroke de-32

tail is invited for object instance search. In the former work [5],33

the authors train one model for each target category, and the em-34

bedding is learned using an edgemap extracted from a relatively35

clutter-free image. They report that using a fully-shared net-36

work was better than use two branches without weight sharing.37

However, the authors in [6] suggest it is more bene�cial to avoid38

sharing any layers in a cross-category retrieval context. Re-39

cently, a hybrid design was explored by Buiet al.[31] using the 40

same architecture on both branches but sharing certain layers.41

However, as their model learns mapping between sketch and42

edgemap (rather than image directly) its performance is lim-43

ited. Furthermore, it is still unclear whether triplet loss works44

better than contrastive loss, with [6, 31] supporting the former45

but [32] claiming the latter. Open questions remain around op-46

timal training methodology, architecture, weight-sharing strate-47

gies, and loss functions, as well as the generalization capability48

of deep models for SBIR. 49

Our work explores these open questions, and broadens the50

investigation of deep learning to SBIR beyond intra-class or in-51

stance level search to retrieval across multiple object categories.52

To avoid confusion we hereafter refer asno-shareor Hetero- 53

geneous those multi-branch networks for which there are no54

shared weights between layers [25]; asfull-share or Siamese 55

those for which all branches have shared weights in all lay-56

ers [5, 27]; andpartial-shareor Hybrid those for which only 57

a subset of layers are shared. 58

Our contributions for this paper are three-fold: 59

� A generic multi-stage training methodology for cross-60

domain learning that leverages multiple loss functions in61

training shared networks as illustrated in Figure 1. 62

� An extensive evaluation of convnet architectures and63

weight sharing strategies. 64

� State-of-the-art performance on three standard SBIR65

benchmarks, outperforming other approaches by a signi�-66

cant margin. 67

3. Methodology 68

We propose a multi-stage training methodology and inves-69

tigate several network designs, comparing the Siamese archi-70

tecture with the Heterogeneous and Hybrid ones. Inspired71

from [31], we aimed to develop a training strategy for partial72

sharing networks. However, unlike [31] who employed a sin-73

gle training phase with a single loss function to concurrently74
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stage 1 stage 2 stage 3-4

Fig. 1. Our training procedure illustrated with a SketchANet-AlexNet architecture: pre-training the unshared layers (stage 1), and the shared layers (stage
2) separately before plugging those into a triplet network (stage 3 and 4).

train both shared and unshared parts of their sketch-edgemap1

network, we believe training a sketch-photo network should re-2

quire more complex procedures. Additionally, we integrate the3

two most widely used regression functions in deep convnet, the4

contrastive loss and triplet loss, in our training procedure.5

3.1. Network architecture6

When learning a cross domain mapping between sketch and7

photo using deep convnet, at least two CNN branches are re-8

quired to deliver feature embedding for these domains. The9

sketch branch and image branch may have the same or dif-10

ferent architecture. LetXS = fxSg and X I = fxI g be col-11

lections of training sketches and images. SupposedFS
� S;� C

(xS)12

andF I
� I ;� C

(xI ) are the embedding functions for sketch and im-13

age domains respectively. Parameters� S and � I represent14

domain-speci�c layers; while� C are the common/shared parts.15

In the scope of this paper, we investigated SketchANet [23],16

AlexNet [4], VGG 16 layers (VGG16) [33] and InceptionV117

(GoogLeNet) [34] for the sketch branchf� S; � Cg; and AlexNet,18

VGG16 and InceptionV1 for the image branchf� I ; � Cg, al-19

though other architectures can also be employed using the same20

methodology.21

Di� erences in design can also arise from the degree to which22

layers within the two branches share weights. Most of the ex-23

isting approaches eliminate eitherf� S; � I g (i. e. full-share) as24

in [35, 26, 5], or� C (i. e. no share) in [6, 25]. It was shown25

in [36, 37] that low-level features are often learned in bottom26

layers of a CNN network while higher semantic features tend to27

emerge from top layers. Therefore, intuitively we want to share28

the top layers so that the feature embedding is learned across29

domains considering the semantics (e.g. categories/classes), 30

and let the bottom layers be learned separately for each domain.31

If the sketch and image branch architectures are completely dif-32

ferent, we possibly need one or several fully-connected (FC)33

layers unifying the branches, as well as loss functions pre- and34

post- uni�cation. We explore several design permutations, eval-35

uating their performance in Sec. 4 with the aim of testing the36

generalization capability of the network across categories, and37

identifying the best performing architecture (CNN architecture,38

loss) and training strategy to optimize retrieval accuracy. 39

At certain training stages, a contrastive loss or triplet loss

can be employed. We normalize inputs prior to these losses.

The contrastive loss function accepts a pair of input examples

(xS; xI ) and regress their embedding closer or push them away

depending on whether or notxS andxI are similar [38]. LetY

represents the label of a training pair (xS; xI ) such that:

Y =

8
>>><
>>>:

0 if (xS; xI ) are similar

1 if (xS; xI ) are dissimilar
(1)

The cross-domain Euclidean distance between two branch's

outputs is de�ned as follows:

D(xS; xI ) =
���
���FS

� S;� C
(xS) � F I

� I ;� C
(xI )

���
���
2

(2)
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Then thecontrastive losscan be written as:

L C(Y; xS; xI ) =
1
2

(1 � Y)D2(xS; xI ) +

1
2

Yfm� D2(xS; xI )g+

(3)

where f:g+ is hinger loss function. Parameterm is a margin1

de�ning an acceptable threshold forxS andxI to be considered2

as dissimilar.3

Thetriplet loss, on the other hand, maintains a relative dis-

tance between the anchor example and both a similar example

and a dissimilar example. The function accepts an input triplet

of form (xS; xI
+ ; xI

� ) consisting ananchorsketch examplexS, a

similar imagexI
+ , and a dissimilar onexI

� . The triplet is then

given by:

L T(xS; xI
+ ; xI

� ) =
1
2

fm+ D2(xS; xI
+) � D2(xS; xI

� )g+ (4)

To accommodate the input triplet (xS; xI
+ ; xI

� ), the CNN net-4

work consists of three branches: a sketch branch (anchor) and5

two identical image branches (positive and negative). The value6

of marginm is �xed at 0.2 in all of our experiments.7

3.2. Dimensionality reduction8

A compact representation is often desirable to allow viable9

implementation of visual search in systems with processing,10

battery and memory constraints. In order to learn the dimen-11

sionality reduction during the training stage we add an inter-12

mediate fully-connected (FC) layer without post-activation. As13

illustrated in Fig. 1 for the SketchANet-AlexNet, an embed-14

ding layerlowerdimis added between layer FC7 (D = 4096)15

and the output layer FC8 (D = 250). By not adding an activa-16

tion (ReLU) layer, we prevent the embedding layer to become17

a bottleneck in the network. Note that from the perspective of18

the softmax-loss layer the connection from FC7 to FC8 is lin-19

ear. We empirically verify that during training the performance20

of the classi�cation layer is not a� ected whetherlowerdim is21

integrated in the architecture or not. Dimensionality reduction22

is tested in subsec. 4.5. Further gains in compactness could be23

explored e.g. via product quantization as [31] but such opti-24

mizations are beyond the scope of this paper.25

3.3. Training procedure 26

We now describe a multi-stage training strategy for all net-

work con�gurations. Although this strategy is designed for

sketch-photo mapping, it can be applied to other cross-domain

learning problems. Inspired from curriculum learning [39], we

trained our model by giving it multiple learning tasks, one-by-

one with increasing di� culties. DenoteL E andL R the cross-

entropy and regularization losses:

L E(z) = � log(
ezy

P
i ezi

) (5)

L R(� ) =
1
2

X

i

� 2
i (6)

Our training procedure consists of 4 stages (Fig. 1): 27

– Stage 1: train unshared layersTrain the sketch and photo

branches independently using a softmax loss, using pre-trained

model if possible. This is purely a classi�cation task which

focuses on learning a representative model for each domain:

arg min
� S;� C

X

i

L E(FS(xS
i )) + � L R(� S; � C) (7)

arg min
� I ;� C

X

i

L E(F I (xi
I )) + � L R(� I ; � C) (8)

where� is the weight decay term. Note: in eqn. 7 and 8� C was 28

learned independently since no joint training is implemented at29

this stage. 30

– Stage 2: train shared layersWe form a double-branch

network, freeze the unshared layers which were already learned

during stage 1. Next, we use contrastive loss together with soft-

max loss to train the shared layers. The use of softmax loss

helps the sharing layers to learn discriminative features from

both domains, whilst contrastive loss (eqn. 3) provides an early

step of regression to bring the two domains together:

arg min
� C

X

i

L E(FS(xS
i ))+

X

i

L E(F I (xI
i )) +

�
X

i

L C(Yi ; xS
i ; xI

i ) + � L R(� C)
(9)

where� is weight of the regression term. We set� = 2:0 in all 31

experiments. 32

– Stage 3: train the whole networkUnfreeze all frozen lay-

ers, form a triplet network and train it with triplet (eqn. 4) and

softmax loss functions. We begin the training with two losses
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contributing equally, then later increase loss weight of the triplet

function (� = 2:0) to steer the learning towards regression:

arg min
� S;� I ;� C

X

i

L E(FS(xS
i )) +

X

i

L E(F I (xI
i+)) +

X

i

L E(F I (xI
i� )) +

�
X

i

L T(xS
i ; xI

i+ ; xI
i� ) + � L R(� S; � I ; � C)

(10)

– Stage 4: (Optional) Repeat stage 3 on any auxiliary1

sketch-photo datasets available to further re�ne the model.2

Our proposed training procedure allows the shared and un-3

shared layers to be learned independently at separate stages.4

The unshared layers of each branch should learn unique features5

distinctive for its domain without being polluted from other do-6

main (stage 1). The shared layers should learn common features7

(usually high level) between the two domains by comparing and8

contrasting low level features from both domains (stage 2). Fi-9

nally, the whole network is adjusted/re�ned using triplet loss10

(stage 3-4).11

Although contrastive and triplet losses are crucial in regres-12

sion learning, we �nd them not tight enough to regulate the13

training. That is why a softmax loss layer is always included in14

our network at every training stage since it provides a stricter15

regularization. Our �ndings are consistent with the work in16

[6, 35] claiming the softmax loss plays an important part for17

convergence of the training. On the other hands, our approach18

di� ers from [6, 35] in that it allows partial sharing across19

branches; which further reduces over�tting (since number of20

training parameters are signi�cantly reduced) while retaining21

the learning �exibility for each domain.22

3.4. Data augmentation23

Data augmentation plays an important role in preventing24

over�tting, especially when training data is limited. In all ex-25

periments we apply the following augmentation techniques for26

both sketch and photo: random crop (crop size 225x225 for27

SketchANet, 227x227 for Alexnet and 224x224 for VGG and28

Inception), random rotation in range [� 5; 5] degrees, random29

scaling in range [0:9;1:1] and random horizontal �ip.30

We also propose an augmentation method applicable for31

sketches only. For sketches with at leastN strokes (N = 1032

in our experiments) we divide them into four equal groups of33

strokes in drawing order. The �rst group contains the most im-34

portant strokes — related to the more coarse structure of the35

object — and it is always kept. A new sketch is created by36

randomly discarding some of the other groups. This technique37

is inspired by Yuet al. [23, 5] who observe that people tend 38

to draw sketches in stages at distinct levels of abstraction. We39

observed a� 1% mAP improvement across the board using this40

random stroke removal augmentation method on the Flickr15k41

benchmark. 42

4. Experiments 43

We evaluated our training strategies on all variants of the44

sketch and image architectures and weight sharing schemes to45

determine the best performing embedding for SBIR. In particu-46

lar we evaluated the ability of the network to generalize beyond47

the categories to which it is exposed during training. This is im-48

portant for SBIR in the wild, where one cannot reasonably train49

with a su� ciently diverse sample of potential query images. We50

also investigated the impact of volume of sketch data used to51

train the network, and the impact of using photos or their edge-52

maps during training (in addition to the various weight sharing53

variants). 54

The structure of this section is as follows. We introduces train55

and test datasets in subsec. 4.1, experimental settings in sub-56

sec. 4.2. We evaluate generalization properties in subsec. 4.3,57

network architectures and sharing in subsec. 4.4, and dimen-58

sional reduction in subsec. 4.5. Finally, subsec. 4.6 compares59

our proposed approach with state-of-art algorithms. 60

4.1. Datasets 61

We trained and evaluated our networks using �ve sketch62

datasets: 63

– TU-Berlin-Class [2] (training stage 1-3) for sketch classi- 64

�cation comprising 250 categories of sketches, 80 per category,65

crowd-sourced from 1350 di� erent non-expert participants with 66

diverse drawing styles; 67

– TU-Berlin-Retr [15] (testing) takes into account not only 68

the category of the retrieved images but also the relative order of69
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stage 1 stage 2 (top) & 3-4 (bottom) conv1 visualization

Fig. 2. 4-stage training of the SketchANet-AlexNet model and visualization of the �rst convolution layer on sketch and image branch.

the relevant images. The dataset consists of 31 sketches and 401

ranked images for each sketch (1240 total images), mixed with2

a set of 100,000 distracting Flickr photos. The authors propose3

a Kendal score as the evaluation method;4

– Sketchy[6] (model �ne-tuning at stage 4) is a �ne-grained5

dataset in which each photo image has� 5 instance-level match-6

ing sketches drawn by di� erent subjects. In total it has 12,5007

photo images and 75,471 corresponding sketches of 125 cate-8

gories of which 100s exist in the TU-Berlin-Class and 25s are9

the new categories;10

– Flickr15K [3] (testing) is a large scale category-level11

dataset. It has labels for 33 categories of sketches, 10 sketches12

per category drawn by 10 non-expert sketchers. It also has a13

di� erent number of photo images per category totalling 15,02414

images crawled from FlickR. The authors suggest to use Mean15

Average Precision (mAP) as the performance metric;16

– Saavedra-SBIR [40] (testing) another category-level17

dataset, consisting 53 sketches and 1326 images organized into18

50 classes. Similar to Flickr15K, the authors recommended19

mAP for evaluation.20

It is important to note that the Flickr15K and TU-Berlin-Retr21

datasets are independent from the training ones in term of not22

only categories but also depiction styles. The TU-Berlin-Class23

and Sketchy covers common objects frequently encountered in24

daily life (stationary, vehicles, food, bird, mammal,...). The25

Flickr15K contains mostly landmarks and buildings (e.g. Eif-26

fel tower, Colosseum, Taj Mahal,...) while the TU-Berlin-Retr27

tends to be scenery speci�c (Fig. 3 (a-d)). On the other hand,28

Saavedra-SBIR happens to share 30 common categories with29

TU-Berlin-Class, but its query set contains distinct sketches30

with exceptionally high level of details (Fig. 3 (e)). These set-31

tings motivate a need for good generalization beyond training.32

Additionally, it helps to avoid bias when comparing with non-33

learning methods which do not require any training data. 34

As TU-Berlin-Class comprises only sketches, in order to35

obtain our training triplets we automatically generated per-36

category photograph sets by querying the 250 category names37

on Creative Commons image repositories. The Flickr API was38

used to download images from 184 categories. Google and39

Bing engines were used for the remaining 66 categories which40

are mainly human body parts (e.g. brain, tooth, skeleton) and41

�ctional objects (e.g. UFO, mermaid, dragon) where Flickr42

content is sparse. We manually selected the 100 most relevant43

photos per category, forming a 25k training corpus (Flickr25K).44
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(a) TU-Berlin-Class [2] and Flickr25K (b) Sketchy [6]

(c) Flickr15K [3] (d) TU-Berlin-Retr [15] (e) Saavedra-SBIR [40]

Fig. 3. Example sketches and images of the training (a-b) and test (c-e) datasets.

4.2. Experimental settings1

We followed the four training stages outlined in subsec. 3.3.2

Photo images are �rst resized retaining aspect ratio so that3

maximum dimension is 256 pixels, then padded with dupli-4

cate pixels along the edges to form uni�ed 256x256 input data.5

Sketches are also centred in 256x256 canvas such that the6

longest side of its bounding box is �xed at 200 pixels. Since7

the training procedure involves multiple sketch datasets whose8

stroke thickness may vary, all sketches are skeletonized to have9

1-pixel stroke width using the morphological thinning method10

described in [41].11

Data augmentation is implemented as in subsec. 3.3. One ex-12

ception is the implementation of random �ip in stage 4 where13

the �negrained Sketchy dataset is being used. To keep the14

�negrain properties, random �ip is performed jointly over the15

anchor-positive pair. We do not do the same with random rota-16

tion and scaling since the rotation range [-5,5] and resizing scale17

[0.9, 1.1] are relatively small and can account for the alignment18

error between the images and corresponding sketches.19

We used Ca� e the deep-learning library [42] to train our20

models. When training the contrastive and triplet networks21

(stage 2 onward), the anchor-positive and negative pairs are22

selected randomly. However, depending on the dataset, a23

pair/triplet can be of either categorical-level (where the posi-24

tive image has the same category label as the anchor's and the25

negative image is from a di� erent category) or instance-level 26

(the positive image has the same instance label i.e. same ob-27

ject, while the negative image has the same category label but28

di� erent instance's). We used categorical-level pair for stage29

2 and categorical-level triplet for stage 3 since the TU-Berlin-30

Class dataset only supports category matching. For the Sketchy31

dataset (stage 4), we combined both categorical and instance-32

levels in triplet formation. Speci�cally, for a given training 33

sketch there is 20% chance a categorical triplet is formed and34

80% chance for an instance-level triplet. This helps to learn35

a model that is both intra- and inter-categorical representative.36

Our idea is similar to the Quadruplet network [35] but instead37

of introducing a new quaduplet input format and a new loss38

function we achieve it via data selection. We do not imple-39

mented hard negative mining since the instance-level selection40

of triplets in stage 4 is already hard enough for the training41

to properly converge. An example of training a SketchANet-42

AlexNet model is illustrated in Fig. 2. 43



Preprint Submitted for review/ Computers & Graphics (2018) 9

4.3. Generalization1

We �rst report the results of generalization capability of our2

triplet networks when varying amount of training data. A series3

of experiments was carried out, starting with a subset of 20 ran-4

dom training categories and 20 sketches per category, up to the5

whole training dataset. As the TU-Berlin-Class has 80 sketches6

per category, the remaining sketches of the chosen categories7

were used for validation. For simplicity we used SketchANet8

for the sketch branch and AlexNet for image branch. We mod-9

i�ed the SketchANet design to enable sharing with AlexNet.10

Speci�cally, layers 1-3 of the sketch branch have SketchANet11

architecture, layers 6-7 mirror AlexNet while the middle layers12

4-5 we have modi�ed from SketchANet as a hybridization of13

the two designs. The modi�ed sketch branch is trained from14

scratch while the image branch is initialized using the Ima-15

geNet pre-trained model [4]. Apart from testing generalization16

we aimed to compare and contrast this partial sharing design17

with the fully shared and no-share architectures; also to ver-18

ify whether our sketch-photo direct matching is better than the19

sketch-edgemap reported in [31].20

Fig. 4 (top) shows that the performance is bene�ted by in-21

creasing the number of training categories. All �ve network22

designs achieved near-linear improvement of retrieval perfor-23

mance against Flickr15k benchmark (discarding the four inter-24

secting categories with the training set) with exposure to more25

diverse category set during training. The mAP of all models26

jumped by� 20% when raising training data from 20 to 250 cat-27

egories. Fig. 4 (middle) has similar trend when we keep number28

of training categories �xed at 250s and vary number of training29

sketches per category. As the results of seeing more data during30

training, all models achieve an improvement of up to 4% mAP31

on Flickr15k. Fig. 4 (bottom) depicts that number of training32

samples is not the only factor that matters most. Here we in-33

crease the number of categories from 20s to 80s while at the34

same time decreasing per category samples, keeping the train-35

ing volume �xed at 4800 sketches. The general trend is an im-36

provement as number of categories increase. We conclude that37

category diversity is crucial for training a generalized network.38

Fig. 4. Experiments with generalisation capability of our learned mod-
els w.r.t. (top) number of training categories (20 sketches per category);
(middle) number of training sketches per category (250 categories); (bot-
tom) �xed training volume (�xed 4800 training samples); tested on the
Flickr15K benchmark.

All three above �gures report the superior performance of39

the partially shared triplet architecture against the no-share40

and fully shared networks regardless of its matching formats41

(sketch-edgemap or sketch-photo). Also, the sketch-photo42

models outperforms the sketch-edgemap ones by a large mar-43

gin. This is understandable since working directly on photo im-44

ages enable the network access full information from raw data.45

In contrast, during edge extraction, certain information such as46

colour and texture that may be distinctive to identify the objects47

of interest will be lost, leaving the network with less informa-48

tive data to learn from. 49

For completeness, Fig. 5 compares our multi-stage train-50

ing method (subsec. 3.3) with Siamese and Triplet models us-51

ing one-shot training. The network design is the same i. e.52
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Fig. 5. Multi-stage training compared with single-stage models, tested on
Flickr15K.

SketchANet-AlexNet for three models but the Siamese and1

Triplet models are trained within a single training stage (with2

weights also initialized from pretrained models). We observed3

a 5% improvement in mAP with our multi-stage model. Note4

all three box-plots have large interquartile range (IQR) and5

whiskers, which illustrates a great performance diversity among6

sketch queries e. g. clean sketches can achieve 100% retrieval7

precision while messy sketches may end up� 0% performance.8

4.4. Convnet architecture settings and parameter sharing9

We experimented various architectures among SketchANet,10

AlexNet, VGG16 and InceptionV1 for sketch and image11

branches. For each sketch-image architecture combination, we12

test all possible sharing options and report the best performed13

model. For example, the fully connected layer 7 (FC7) and later14

in AlexNet and VGG are share-able while SketchANet and In-15

ceptionV1 can only share parameters after the dimensional re-16

duction layer (lowerdimin Fig. 1).17

Table 1 shows the performance of all available combinations18

of sketch-image designs on the Flickr15k benchmark. Again,19

we found that for certain sketch-photo architecture combina-20

tions there always exists a partial sharing con�guration better21

than the full-share and no-share ones. For example, AlexNet-22

VGG16 has the highest performance (39.77% mAP) when shar-23

ing from layer FC7, SketchANet-AlexNet performs the best at24

sharing from FC6. InceptionV1 has a distinct architecture how-25

ever we found that sharing all layers followinglowerdim(i.e.26

the n-way classi�er FC layer) results in a better mAP.27

It is worth noting that the sketch branch should not be28

more complex than the image branch. The AlexNet-VGG16,29

AlexNet-InceptionV1 and VGG16-InceptionV1 designs all30

outperform their VGG16-AlexNet, InceptionV1-AlexNet and 31

InceptionV1-VGG16 counterparts by 2-7% mAP. Additionally,32

when InceptionV1 is selected for the image branch, choos-33

ing SketchANet for the sketch branch is more e� cient than 34

AlexNet or VGG16 although SketchANet is simpler and has35

fewer parameters than the two others. We hypotheses that hav-36

ing an over-complicated design for the sketch branch can cause37

it over-trained in a contrastive or triplet network, especially with38

limited training data. 39

Nevertheless, using identical architecture for both sketch and40

image branches results in the highest performance (the diago-41

nal line of Table 1). We conjecture that partially shared sketch42

and image branches may enable more balanced weight updates43

during back-propagation, mitigating against over-training in a44

single branch. This may prove a useful strategy more gener-45

ally in combating over-�tting alongside popular methods such46

as regularization and dropout. 47

Details of the weight sharing experiments for identical48

branch (i.e. homogeneous) triplet networks are shown in49

Fig. 6. The best sharing con�gurations for AlexNet-AlexNet50

and VGG16-VGG16 are from conv5 and block5 respectively.51

For InceptionV1-InceptionV1, there is a drop in performance at52

Inception block 4d where the second auxiliary classi�er (ten- 53

drill ) is attached. Removing the auxiliary classi�ers (the main54

classi�ers at top of the network remain shared), we achieve55

peak performance when sharing from inception layer 4e. In56

all three cases the no-share con�guration under-performs both57

the full-share and partial-sharing performace (the performance58

gain ranges from 7% for VGG16 to 14% for AlexNet). 59

4.5. Dimensionality reduction 60

Fig. 7 reports the mAP and retrieval time of our best model61

in Table 1 (InceptionV1-InceptionV1) when varying output di-62

mension within rangeD 2 [64;1024]. In general the mAP 63

steadily improves as size oflowerdimincreases. We achieve a 64

record performance of 55.06% mAP on Flickr15K at D=1024. 65
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Fig. 6. From full-share to no-share: e� ects of partial sharing on accuracy (a) AlexNet-AlexNet; (b) VGG16-VGG16; and (c) InceptionV1-InceptionV1
networks, evaluated over FlickR15K.

Flickr15K SBIR mAP(%)
Image branch

SketchANet [31] AlexNet VGG16 InceptionV1

Sketch
branch

SketchANet 24.45 37.41 36.80 41.99
AlexNet - 45.16 39.77 41.65
VGG16 - 36.22 49.99 40.74
InceptionV1 - 34.98 38.77 51.11

Table 1. Performance of various network designs on the FlickR15K benchmark. Note: (i) SketchANet-SketchANet is the only sketch-edgemap model
(reported in [31]), the rest are sketch-photo models; (ii) lowerdim is �xed at 128-D for all models.

Fig. 7. Accuracy and speed performance of InceptionV1-InceptionV1
model with di� erent output dimension.

However, retrieval time also linearly increases (note the x-axis1

of Fig. 7 is log scale). On a commodity 2.80GHz Intel i7 work-2

station, a simple linear search using a single CPU thread takes3

from 3ms to 34ms per query when increasinglowerdim's di-4

mension from 64-D to 1024-D.5

Considering the trade o� between speed and accuracy we se-6

lected D=256 as our �nal model (53.26% mAP, 4.4ms retrieval7

time). This allows us to encode the whole Flickr15K dataset8

using just 15MB of memory, or 1MB footprint for every 1K im-9

ages. Since the linear search complexity isO(ND) and feature 10

extraction time is averagely 15.2ms per query (on a GeForce11

GTX 1070 GPU), in theory our model can retain interactive12

speed (i. e. retrieval time less than 1 second) when querying13

up to 3M images. For larger datasets, more e� cient indexing 14

methods e. g. kd-tree, inverted index,... are recommended. 15

4.6. Benchmark evaluation 16

We compare our selected model (InceptionV1-InceptionV117

with partial sharing from inception block 4e, output dimension18

256-D) with other approaches in the literature. The �rst bench-19

mark is the defacto Flickr15k [3] datasets used in� 20 published 20

SBIR algorithms and variants. Some key approaches are: 21

� Hand-crafted approaches: these methods use hand-crafted22

features and often dictionary learning to deliver global23

�ngerprint for each image. Notable algorithms include24

Structure Tensor [16], Shape Context [43], Self Similarity25

(SSIM) [44], SHoG [15], SHELO and its variants [22, 45], 26

HLR and its variants [46], KeyShapes [7], GF-HoG and its27

color version [17, 3] and Perceptual Edge [20]. 28
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Fig. 8. Representative SBIR results on Flickr15K using (left) sketches and (right) images as queries. For each query, two sets of results are returned, one
for intra-domain and the other for cross domain search. Red bounding boxes indicate false positives.

Fig. 9. t-sne visualization of the Flickr15K dataset within our best performing embedding (InceptionV1-InceptionV1). Sketches and photographs of objects
are mapped to similar locations in 128-D space.
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