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MSFD: Multi-scale segmentation based feature
detection for wide-baseline scene reconstruction

Armin Mustafa, Hansung Kim, and Adrian Hilton

Abstract—A common problem in wide-baseline matching is
the sparse and non-uniform distribution of correspondences when
using conventional detectors such as SIFT, SURF, FAST, A-KAZE
and MSER. In this paper we introduce a novel segmentation
based feature detector (SFD) that produces an increased number
of accurate features for wide-baseline matching. A multi-scale
SFD is proposed using bilateral image decomposition to produce
a large number of scale-invariant features for wide-baseline
reconstruction. All input images are over-segmented into re-
gions using any existing segmentation technique like Watershed,
Mean-shift, and SLIC. Feature points are then detected at the
intersection of the boundaries of three or more regions. The
detected feature points are local maxima of the image function.
The key advantage of feature detection based on segmentation
is that it does not require global threshold setting and can
therefore detect features throughout the image. A comprehensive
evaluation demonstrates that SFD gives an increased number of
features which are accurately localised and matched between
wide-baseline camera views; the number of features for a given
matching error increases by a factor of 3-5 compared to SIFT;
feature detection and matching performance is maintained with
increasing baseline between views; multi-scale SFD improves
matching performance at varying scales. Application of SFD to
sparse multi-view wide-baseline reconstruction demonstrates a
factor of ten increase in the number of reconstructed points with
improved scene coverage compared to SIFT/MSER/A-KAZE.
Evaluation against ground-truth shows that SFD produces an
increased number of wide-baseline matches with reduced error.

Index Terms—Feature detection, Segmentation, Matching,
Sparse Reconstruction.

I. INTRODUCTION

Finding reliable correspondences between images is a fun-
damental problem in computer vision applications such as
object recognition, camera tracking and automated 3D recon-
struction. In this paper we focus on the problem of wide-
baseline matching for general indoor and outdoor scenes.
Existing feature detectors such as Harris [1], [2], SIFT [3],
SURF [4], FAST [5], KAZE [6] and MSER [7] often yield
sparse and non-uniformly distributed feature sets for wide-
baseline matching and reconstruction, as seen in later sections.
Gradient-based detectors (Harris, SIFT, SURF, STAR [8]) lo-
cate features at points of high-image gradient in multiple direc-
tions and scales to identify salient features which are suitable
for affine-invariant matching. This results in sparse features
with no detections in uniform regions. Existing segmentation
based detectors such as MSER identify salient regions which
can be reliably matched across wide-baseline views. However,
this results in relatively few features. Existing feature detectors
produces a highly sparse non-uniform distribution of scene
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features. Whilst this may be sufficient for camera estimation
and sparse point reconstruction using bundle-adjustment, the
detected feature set often results in poor scene coverage.

In this paper we introduce features based on over-
segmentation of the image. We propose a new multi-scale
segmentation based feature detector MSFD which uses the
segmentation boundary (local maximal ridge lines of the
image) rather than the segmentation regions. MSFD feature
point detections are located at the intersection points of three
or more region boundaries. The intersection points represent
local maxima of the image function in multiple directions
giving stable localization. The key advantage of this approach
over previous gradient and region based feature detectors is
that it does not require any global thresholds to be set. Features
are detected at local maxima of the image or image gradient
function. This enables feature detection throughout the image
according to the local image variation giving an increased
number of feature detections and accurate localisation for
widely varying views.

A comprehensive performance evaluation of MSFD is per-
formed with respect to previously proposed feature detection
approaches. Evaluation of SFD feature point detections across
wide-baseline views demonstrates that the region intersection
points are stable and accurately localized, an example is illus-
trated in Figure 1. SFD feature points are also demonstrated
to give improved scene coverage with computational cost
similar to existing efficient wide-baseline feature detectors
(SURF/FAST/A-KAZE). Our preliminary work on SFD has
been previously published at [9] and a video is available
online1. As compared to our previous paper, this paper: (a)
Introduces a multi-scale SFD feature detection (MSFD) based
on bilateral decomposition of the image for scale invariant
feature detection; (b) Presents a comprehensive performance
evaluation of SFD and MSFD on a wide variety of indoor
and outdoor datasets against 11 existing feature detectors
demonstrating significant performance improvement; and (c)
Presents comparative evaluation of MSFD against single scale
SFD [9] and previous feature detectors. Contributions of this
paper are:
• A novel multi-scale segmentation based feature detec-

tor MSFD for wide-baseline matching; which gives an
increased number of accurately localised features for
different viewpoints and improved coverage for natural
scenes.

• MSFD using bilateral filter based image decomposition
for scale-invariant feature detection without global thresh-

1 https://www.youtube.com/watch?v=m3NThvKpR5w

https://www.youtube.com/watch?v=m3NThvKpR5w
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Fig. 1. Segmentation-based Feature Detection SFD for wide-baseline matching and reconstruction for Odzemok dataset.

olds.
• MSFD achieves a factor of ten increase in the number of

features detected and matched for a given re-projection
error for wide-baseline images.

• A comprehensive performance evaluation of SFD for
wide-baseline matching on benchmark datasets against
existing feature detectors (Harris, SIFT, SURF, FAST,
MSER, ORB, A-KAZE) and descriptors(SIFT, BRIEF,
ORB, SURF) showed improved performance in number
of features and matching accuracy.

Application of multi-scale SFD to reconstruction from wide-
baseline camera views demonstrates an order of magnitude
increase in the number of reconstructed points with improved
scene coverage and reduced error compared to previous de-
tectors against ground-truth. Proposed MSFD achieves:
• SFD and MSFD feature detection achieves state-of-the-

art performance irrespective of the choice of underlying
segmentation method (Watershed, Mean-shift, SLIC).

• Performance evaluation of MSFD against single-scale
SFD [9] and existing feature detectors (Harris, SIFT,
SURF, MSER, A-KAZE) demonstrates increased matches
and stable performance with increasing baseline between
camera views at varying scales between 0.25 to 2.

II. PREVIOUS WORK

Decades of research has developed numerous feature de-
tection techniques and a review into interest-point detection
reveals three main approaches [10], [11]: image gradient
analysis, intensity templates, and contour analysis.

A. Image Gradient based Features

Early image gradient based approaches, such as Forstner
corner detector [12], define an optimal point based on the
distances from the local gradient lines and Harris corner
detector [1], define an interest-point as the maximum of a
function of the Hessian of the image. They used the local
autocorrelation function of a signal to measure the local
changes of the signal with patches shifted by a small amount in
different directions. A scale-invariant extension was achieved
by successive application of Gaussian kernels on scale-space
representation of image and detecting interest-point as a local
maximum both spatially, and across the scale-space [13] to
deal with significant affine transformations. Mikolajcyzk and
Schmid seek these maxima via the Laplacian-of-Gaussian
(LoG) filter, which is a combination of the Gaussian smoothing
and the differentiation operation [14].

SIFT implements Difference-of-Gaussians [3] to improve
on earlier approaches by transforming an image into a large
collection of local feature vectors which are invariant to
changes in scale, illumination and local affine distortions.

Lowe exploited locations that are maxima or minima of a
Difference-of-Gaussian (DoG) function applied in scale space
to generate local feature vector. Another detector exploits scale
and DoG to extract features [15]. A combination of gradient
space with local symmetry was used in [16]. Gradient based
techniques offer accurate localization [17], and are robust
to many image transformations [13]. However, computation
of the image gradients are sensitive to image noise and are
computationally expensive. SURF mitigates this via the use
of integral images and 2D Haar wavelets [4].

CenSurE achieves even faster operation by approximating
the LoG operator with a bi-level filter [8]. These approaches
suffer from drawbacks since Gaussian blurring does not pre-
serve object boundaries and smooths details and noise at all
scales, spoiling localization accuracy and distinctiveness. To
overcome this problem KAZE features were introduced to
detect and describe features in non-linear scale-space [6]. The
scale-space representation is computed by non-linear diffusion
filtering instead of Gaussian smoothing, yielding an improve-
ment in the localization accuracy in [6], thereby increasing
repeatability w.r.t SIFT and SURF. The main drawback of
KAZE is that it is computationally intense which is addressed
by A-KAZE by using efficient diffusion filtering [18]. This
claims superiority over all major gradient based methods in
terms of computational complexity.

B. Intensity based Features

Intensity template approaches seek patterns that are com-
mon manifestations of interest-points [11]. FAST first com-
putes the intensity differences between the central pixel and
a circle surrounding it, and then counts the contiguous pixels
with a difference above a threshold [5]. A rotation-invariant
implementation is proposed in [19], and a multi-scale exten-
sion in [20]. An extension to a multi-scale detector by scale
selection with the Laplacian function was proposed in [21].

Maximally Stable Extremal Regions (MSER) is a region
detector responding to areas conforming to a ‘basin’ tem-
plate [7]. The word ‘extremal’ refers to the property that all
pixels inside the MSER have either higher (bright extremal
regions) or lower (dark extremal regions) intensity than all
the pixels on its outer boundary. The word ‘maximally stable’
describes the threshold selection process since every extremal
region is a connected component of a thresholded image. In
contrast SFD and MSFD detect intersection points on the
region boundaries of the over-segmented image instead of
detecting the regions like MSER, removing the requirement of
global threshold. Intensity template methods are usually fast,
compared to their gradient based counterparts [11]. However,
with the exception of MSER, they are not affine-invariant,
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which limits their ability to cope with viewpoint variations, as
presented in evaluation in [17].

C. Contour based Features
Contour intersections and junctions often result in bi-

directional signal changes. Therefore, a good strategy to
detect features is to extract points along the contour with
high curvature. Curvature of an analog curve is defined as
the rate at which the unit tangent vector changes with re-
spect to arc length. Contours are often encoded in chains
of points or represented in a parametric form using splines
[22]. Hence, image contours give rise to two interest-point
definitions: local maxima of the curvature along a contour,
and intersections. Mokhtarian and Suomla [23] implemented
the former by building a scale-space representation of the
contour map for the image, and detecting the local maxima
of the curvature. The robustness was improved by using
gradient correlation based detector [24]. Structured tensor was
exploited along with contour information to extract reliable
features [25]. Intersection of contour elements provides an
alternative interest-point definition. T-junctions constitute a
straightforward example [23] which inspires the proposed fea-
ture detector. Performance of curvature based techniques are
dependent on the quality of the extracted edges [26]. Although
they are generally fast, the scale-space approach introduces a
compromise between robustness and accuracy. On the other
hand, contours, especially intersections are distinctive. There-
fore, they are more robust to viewpoint variation [27], [26].
A recent paper proposed feature points on object contours for
application to recognition [28].
D. Learning based features

Although feature detectors have mainly focused on hand-
crafted methods, several learning based methods are proposed
recently [29], [30], [31], [32]. A classifier was learnt to
detect matchable keypoints for Structure-from-Motion (SFM)
applications in [30]. They collect matchable keypoints by
observing which keypoints are retained throughout the SFM
pipeline and learn these keypoints. Although their method
shows significant speed-up, they remain limited by the quality
of the initial keypoint detector. Method was proposed to
identify patch based local convolution features for applica-
tion to image retrieval [33]. [29] learns convolutional filters
through random sampling while searching for the filter that
gives the smallest pose estimation error when applied to
stereo visual odometry. Efficient features based on Gaussian
kernels were proposed for classification by [34]. [32] proposed
a deep-learning feature detector and descriptor for various
applications. Evaluation of LIFT features is shown using the
general SFM pipeline but the images are not wide-baseline.
FAST detector [35] was introduced to speed-up the detection
using machine learning.Improved repeatability and speed was
achieved by FAST-ER [11]. Machine learning based feature
detectors and descriptors [36], [37], [38] were proposed for
visual and facial recognition respectively. [36] exploits the
contextual information of adjacent bits for more robust feature
detection. Binary features were introduced for tracking [39]
such that a binary descriptor was generated and optimized for
each image patch independently. But none of these features
have been designed for the purpose of wide-baseline stereo.

E. Summary and Motivation

To overcome the limitations of existing feature detectors in
terms of scene coverage and matching across wide-baseline
views a segmentation based feature detector is introduced. It
is based on the property that the intersections of contours
are robust to changes in viewpoint [27], [26]. The number
of features detected by curvature based techniques is quite
small [26] and none of them have been proposed and evaluated
on wide-baseline image pairs. They are based on only edge
detection and vulnerable to the well-known difficulties in
producing stable, connected, one-pixel wide contours [2].
To avoid this an over-segmentation based method for stable
feature detection is proposed. The idea of using regions for
salient feature matching is well known and is exploited in [40]
for applications other than wide-baseline stereo. A survey on
interest points based on Watershed, Mean-shift and Graph-
cut segmentation was presented by [41]. This paper proposed
a method that uses boundaries and centres of gravity of
the segments for extracting features. Evaluation of region
segmentation approaches shows that Watershed is superior
to the alternatives in terms of repeatability and Mean-shift
segmentation performs best for natural scenes [41]. Watershed
is superior in terms of repeatability as it detects the local
maxima of the gradient magnitude intensities as the region
boundaries. Proposed SFD features are based on the the
detection of points at the intersection of local maxima, hence
Watershed is chosen as the base segmentation technique.

III. SINGLE-SCALE SFD
In this section we introduce the segmentation based feature

detector. The main motivation for this approach is to obtain
feature detections uniformly distributed throughout the image
rather than just in areas of high variation which is com-
mon with existing feature detectors. Distribution of features
throughout the scene is important for applications such as
matching across multiple wide-baseline views for reconstruc-
tion [42] and photo-tourism [43], as shown in Figure 1. The ap-
proach is based on over-segmentation of the image into regions
which ensures that detected features are distributed across
the entire image as the region boundaries are located along
contours of local maxima in the image. Over-segmentation
detects regions and boundaries at both strong and weak edges,
ensuring that the features are robust to the changes in view-
point. These points of local maxima are consistent with respect
to viewpoint change [41]. The use of local maximal contours
overcomes the common problem of setting arbitrary thresholds
or scales for feature detection, which is common to most
existing feature detectors. SFD feature detection is based on
the segmentation of the image such that the features are
detected at the boundaries of the segmented regions hence
the name ‘Segmentation based features’.
A. Feature Detection

Segmentation of an image results in a large number of
small regions with uniform appearance. The region boundaries
represent ridge lines corresponding to local maxima of the
image function or maxima in gradient if the segmentation
is performed on a gradient image. The boundary intersec-
tion points where three or more region boundaries meet are
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Fig. 2. Illustration of SFD feature detection on the watershed segmentation
for Odzemok dataset.

Fig. 3. SFD feature detection on Odzemok dataset for 4 views illustrating
the stability of SFD with changes in viewpoint.

local maxima in the image function in multiple directions.
Consequently these points are accurately localized, distinctive
and stable under changes in viewpoint giving good features
for matching across wide-baseline views. This observation
forms the basis of our proposed region based feature detector,
resulting in an increased number of salient features which are
suitable for matching across wide-baseline views.

Over-segmentation is performed on the image using existing
segmentation techniques such that the regions in the image are
separated by a 1 pixel wide boundary. The intersection points
of three or more region boundaries in the over-segmented
image are detected as features and a unique intersection can
only be obtained with regions of 1 pixel wide boundary. The
region intersection points are identified by traversing through
the boundary points in the image such that for each point on
the contour 3×3 pixel neighbourhood is tested for the number
of region labels. If three or more region labels are present the
point is detected as a feature as illustrated in Figure 2. These
points are detected for the whole image on the region boundary
contours. Locating features where multiple region boundaries
(3 or more) intersect followed by sub-pixel refinement gives
good localization, therefore SFD achieves good localization
which is consistent with-respect-to changes in viewpoint, as
illustrated in Figure 3 for Odzemok dataset. Segmentation
is obtained for different viewpoints with a baseline varying
between 0◦ − 90◦ followed by SFD feature detection. SFD
features consistent across views are highlighted in the figure
to show the stability of localization with viewpoint.
B. Sub-pixel Refinement

Let us denote the set of features detected for an image
as F = {f1, f2, ..., fNF

}, where NF is the total number

of features. These features are integer values of the pixels
where intersections of regions are detected. We perform a
local sub-pixel refinement to optimize the feature location fi
at a local gradient maxima using the Levenberg-Marquardt
method [44]. This refinement is based on the observation that
every vector from the feature fi to a point pj located within a
neighbourhood N of fi = {x, y}T is orthogonal to the image
gradient Gj = {gx, gy}T at pj = {x+ ∆x, y + ∆y}T , where
∆x,∆y is the shift at the point fi. In our case a window
size of W × W is chosen for the neighbourhood N , such
that W = min(NW ,NH)

100 which is the optimum window size
for good localization of the features [45]. NW and NH are
the width and height of the input image. The cost function is
defined as:

T (fi) =
∑
jεN

tj(fi), where, tj(fi) = (GTj (fi−pj)(1−e−
∆x2

i +∆y2
i

2 ))2

(1)
Since the vectors Gj and fi − pj are orthogonal, tj(fi) is
0 if fi is at a local maxima, thereby making T (fi) to be 0.
The sub-pixel position of the feature point is the minima of
T (fi). The process is repeated for the entire feature set F to
obtain a new solution F ∗ = argminfi {T (fi)} and the speed
is optimized by parallelization. Feature descriptors are then
applied to the local image regions of F ∗ to perform matching
and reconstruction.

C. Segmentation

SFD can use different segmentation techniques, in this
section we review possible segmentation methods. The perfor-
mance of SFD for different segmentation methods is evaluated
in Section VI.

Segmentation of an image is defined as the process of
partitioning an image into multiple segments. Pixels in each
region share similar properties and are distinct from the
pixels in adjacent regions. The boundary of the segments
define contours of local maxima in the image. Our focus
is on finding fast, automatic and stable over-segmentation
techniques suitable for wide-baseline matching in general
indoor or outdoor scenes. The SFD features defined in Section
III-A are evaluated on three different segmentation techniques:
Watershed (WA) [46]: The first segmentation technique is
based on morphology. Readers are referred to [47] for detailed
information on morphological segmentation techniques; the
watershed transform [46] is used in this approach because of
speed and efficiency. The watershed transformation considers
the gradient magnitude of an image as a topographic surface.
Pixels having the highest gradient magnitude correspond to
watershed lines which represent the region boundaries. Water
placed on any pixel enclosed by a common watershed line
flows downhill to a common local intensity minimum. Pixels
draining to a common minimum form a basin, which repre-
sents a segment partitioning the image into two different sets:
the catchment basins and the watershed lines.

Implementing the transformation on the image gradient,
the catchment basins correspond to homogeneous grey level
regions of this image. In practice, this transform produces an
over-segmentation due to scene structure, local appearance
variation and image noise. We use the modified and more
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Fig. 4. Different segmentation algorithms for SFD feature detection.

robust version of the watershed algorithm defined in [48]. An
example on Odzemok dataset is shown in Figure 4.
Mean-shift (MS) [49]: Mean-shift considers feature space as
a empirical probability density function. For each data point,
Mean-shift associates it with the nearby peak of the datasets
probability density function. For each data point, Mean-shift
defines a window around it and computes the mean of the data
point. Then it shifts the center of the window to the mean and
repeats the algorithm till it converges. After each iteration, the
window shifts to a more denser region of the dataset. There are
three main parameters considered in this segmentation: Spatial
resolution parameter(SRP ) which affects the smoothing and
connectivity of segments, it is chosen depending on the size
of the image, Range resolution parameter (RRP ) which
affects the number of segments and the third parameter is
Size of smallest segment (S3). The parameters are initialized
automatically and assignments to each of these parameters are:
SRP = NW×NH

7.776×104 , RRP = NW×NH

7.776×104 , S3 = wmin ∗ hmin
,where NW and NH are the width and height of input image
and wmin and hmin are the minimum width and height of
segmented regions which is set to approx 60×30 respectively.

The mean-shift segmentation method is based on connect-
edness criterion and is proved to give stable and repeatable
segments for natural scenes [41]. This is an unsupervised over-
segmentation technique performed on image pre-processed
using Bilateral filter to remove noise. An example is shown
in Figure 4 on Odzemok dataset.
Simple Linear Iterative Clustering Super-pixels
(SLIC) [50]: This segmentation technique is a super-
pixel method and it clusters pixels in the combined
five-dimensional color and image plane space to efficiently
generate compact, nearly uniform super-pixels with a low
computational overhead. This approach generates super-pixels
by clustering pixels based on their color similarity and
proximity in the image plane. SLIC is demonstrated to
achieve good quality segmentation at a lower computational
cost over state-of-the-art super-pixel methods.

The segmentation requires the number of regions (S) as
input and this is calculated it using the following equation in
this work: S = W×H

wmin×hmin
, where W and H are the width and

height of input image and wmin and hmin are the minimum
width and height of segmented regions which is set to approx
60 × 30 respectively to avoid very small segments as shown
in Figure 4.

Fig. 5. Results for Dance1 dataset: Top 3 rows: Features detected on
pair of images from SIFT, A-KAZE and SFD approach using watershed
segmentation. Last row: Matched features. The number of features and
matches are shown on the top right of each image respectively.

In this section SFD feature detection introduced for uniform
scene coverage in the wide-baseline scene reconstruction was
described in detail. Various segmentation techniques like Wa-
tershed, Mean-Shift and SLIC used for proposed feature de-
tection were explained. These Single-scale SFD features work
well for wide-timeframe matching as shown in [51]. Although
SFD depends on over-segmentation of the image it should be
noted that increasing the segments to a denser level will lead
to higher computational complexity and exponentially reduced
matching accuracy. When images undergo transformations or
deformations the segmentation approaches are able to retrieve
consistent edges in the images. The change in viewpoint or
lighting causes a slight variance in the strength of the edges but
the points of intersection remain robust to these deformations.

Feature detection is performed on pair of multi-view images
which is followed by feature matching. An example of compar-
ison of SFD features detected and matched is shown in Figure
5, against SIFT and A-KAZE. The highlighted region in the
image shows that SFD gives improved coverage of features as
compared to existing state-of-the-art methods. Feature matches
are used for camera parameter estimation followed by wide-
baseline sparse scene reconstruction, explained in Section V.

IV. MULTI-SCALE SFD

Although SFD points are invariant to rotation and illumi-
nation changes, the features are not invariant to the scale.
Hence multi-scale SFD (MSFD) is proposed to introduce
scale invariance by constructing a bilateral image pyramid. A
bilateral filter is used for our multi-scale algorithm because
it avoids the halo artefacts commonly associated with the
traditional Laplacian image pyramid and it preserves strong
edges compared to Gaussian filtering over different scales.
In existing scale-space methods either the image size is
varied and a filter (e.g., Gaussian filter) is repeatedly applied
to smooth subsequent layers, or the original image is kept
unchanged, varying the filter size to change the scale. In this
paper we choose the second approach to reduce redundancy
and to avoid blurring of the edges due to down-sampling at
every pyramid level.

Previously bilateral filter decomposition has been used for
detail enhancement in images [52]. In this paper a series of
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Fig. 6. Multi-scale SFD feature detection on Odzemok dataset for different
scales from j = 0 to 4.

filtered images Ij are obtained, such that the strongest edges
in the input image I are preserved while smoothing small
changes in intensity for multi-scale segmentation based feature
detection. The bilateral filtering operation at each scale j is
defined as follows:

Ijp =
1

k

∑
q∈Ω

gσs,j (‖q‖) .gσr,j

(
Ijp+q − Ijp

)
.Ijp+q (2)

where p is a pixel coordinate, k =∑
q∈Ω gσs,j

(‖q‖) .gσr,j

(
Ijp+q − Ijp

)
, ,gσ(x) = exp(− x2

σ2 ),
σs,j and σr,j are the widths of the spatial and range Gaussians
respectively and q is the offset window around p. The scale
of the filter j varies from 0 to 4, where j = 0 is the finest
scale such that I0 = I . The number of scales are selected
based on the experiments in the previous papers [3], [52].

In single scale SFD, explained in section III-B, features
F ∗ are detected on single scale for image I . MSFD features
are extracted by over-segmenting the set of filtered images
Ij for each input image I . Let us denote the set of features
detected after sub-pixel refinement at each scale j with F ∗j .
SFD features are detected to obtain F ∗j , such that F ∗j+1 < F ∗j
due to the reduction in the level of detail at each level as
shown in Figure 6. The final set of multi-scale SFD features
is defined as: F ∗ =

∑4
j=0 F

∗
j , such that the redundant features

are removed from the final set. An evaluation of the proposed
MSFD against SFD and existing feature detection methods
like SIFT, A-KAZE is presented in Section VI-B.

V. WIDE-BASELINE SCENE RECONSTRUCTION

Wide-baseline correspondences are obtained for all pairs
of images using SFD. These correspondences are used to
reconstruct a sparse 3D representation of the scene. We assume
that the camera intrinsics are known and camera extrinsics
together with 3D point locations are estimated using the cor-
respondences. The fundamental matrix estimation procedure
employs RANSAC and the normalized 8-point algorithm [53],
to find the epipolar geometry using the intrinsics. The first
camera is chosen as the world reference frame to obtain the
camera matrix for the second camera from the fundamental
matrix. Then, for each image correspondence, the triangulation
algorithm [53] seeks the 3D point that minimizes the re-
projection error. After the initial pairwise sparse reconstruction
is obtained, a new camera is registered to the structure by
finding the 2D and 3D correspondences between views and
the 3D structure. The view with highest correspondences is
selected and pose is estimated for the view from 3D-2D point
correspondences using the RANSAC algorithm. The estimated

pose minimizes re-projection error and the scene is augmented
by triangulating the correspondences. The process is repeated
for all the views until the camera pairs are exhausted. The
algorithm employs global bundle-adjustment [43] to minimize
the re-projection error over the calibration and the structure
parameters to get the sparse reconstruction.

Dataset Resolution Number of views Baseline
Odzemok 1920× 1080 8(2 moving) 15◦
Dance1 1920× 1080 7(1 moving) 15◦
Office 1920× 1080 8(all static) 15◦
Magician 960× 544 5(all moving) 40◦-55◦
Rossendale 1920× 1080 8(all static) 25◦
Cathedral 1920× 1080 8(all static) 45◦
Patio 1920× 1080 12(all static) 15◦
Juggler 960× 544 6(all moving) 25◦-30◦
Building, Books, Cloth
& Architecture 800× 600 119(all static) 15◦-30◦
Merton 1024× 768 3(all static) 10◦-15◦
Valbonne 512× 768 15(all static) 15◦-30◦
Castle 1024× 768 19(all static) 10◦-15◦
Car 512× 768 7(all static) 15◦-30◦

TABLE I
THE CHARACTERISTIC PROPERTIES OF DATASETS USED FOR EVALUATION.

VI. RESULTS AND EVALUATION

Evaluation is performed on a variety of datasets: static and
dynamic; indoor and outdoor scenes. State-of-the-art feature
detection techniques have used the static indoor and outdoor
datasets in their evaluation, hence these datasets are included
in our evaluation for fair comparison. The characteristics of
datasets are presented in Table I. Various benchmark dynamic
datasets have been included to emphasize the importance of
SFD in wide-baseline dynamic scene reconstruction. Wide-
baseline image/video datasets (15-45 degree angle between
adjacent cameras) of natural indoor and outdoor scenes under
variable lighting are: 1. Static indoor datasets [17]: Building,
Books, Cloth, Architecture. We have chosen datasets from
different categories in [17] such that the datasets are relevant
to the problem of dynamic wide-baseline scene reconstruction,
which is main focus of SFD features. Challenges: Variable
lighting and viewpoints; 2. Static outdoor datasets: Merton
CollegeI 2, Valbonne2, Castle2, Car2. Challenges: Repetitive
background, varying lighting condition. ; 3. Dynamic in-
door datasets: Odzemok3 , Dance13, Office3, , Magician4.
Challenges: Both scattered and uniform background, stable
lighting condition, single and multiple objects. Magician is
captured with only hand-held cameras; and 4. Dynamic
outdoor datasets: Rossendale3, Cathedral3, Patio3, Juggler4.
Challenges: Both scattered and uniform background, repetitive
background, variation in illumination. Juggler is captured with
only hand-held cameras.

The SFD feature detector is evaluated based on the proper-
ties of good features described in [54]: quantity; efficiency; ac-
curacy; coverage; and reconstruction accuracy in the following
sections. Following sections present extensive experimental
results obtained on the standard evaluation set of [13] and
on practical wide-baseline image matching applications.

2 http://www.robots.ox.ac.uk/∼vgg/data/
3 http://cvssp.org/data/cvssp3d/
4 http://www.inf.ethz.ch/personal/lballan/datasets.html
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Dataset SIFT AKAZE MSER SURF Harris FAST S-WA S-MS S-SLIC
Odzemok 8101 8102 8066 8043 8005 8029 8169 7908 8093
Dance1 7929 8018 7996 8121 8215 8197 8242 7956 8305
Office 7948 8176 8027 8036 7910 8032 8074 7822 7998
Magician 8018 7994 7889 7969 7915 7904 7921 7878 7909
Rossendale 6462 6543 6312 6498 6614 6590 6576 6349 6542
Cathedral 7911 7831 7845 7964 7894 7776 7806 7747 7983
Patio 7231 7390 7197 7207 7120 7225 7207 7156 7176
Juggler 5445 5498 5209 5467 5327 5476 5231 5196 5435
Building 4954 5029 4499 4962 4855 4838 4981 4809 4943
Books 4898 4907 4714 4813 4705 4853 4877 4796 4814
Cloth 4467 4591 4361 4487 4339 4502 4532 4321 4559
Architecture 4736 4818 4545 4775 4721 4681 4790 4683 4897
Merton 9882 10076 9941 9910 9897 9862 9947 9817 10336
Valbonne 3158 3223 3095 3178 2994 3169 3251 2939 3065
Castle 5597 5846 5416 5582 5737 5713 5674 5547 5848
Car 7851 8002 7761 7914 7812 7809 7764 7939 8065

TABLE II
THE NUMBER OF FEATURES DETECTED WITH EXISTING FEATURE

DETECTORS (COLUMN 2nd TO 7th) AND PROPOSED SFD FOR THREE
DIFFERENT SEGMENTATION APPROACHES (COLUMN 8th TO 10th)

Fig. 7. Results for all datasets: Top two rows: Pair of images from each
dataset, Bottom 8 rows: Column 1st − 3rd - Features matched between
each image pair using MSER, SIFT and A-KAZE respectively, Column 4th

- Features matched between pair of images using proposed SFD features.

A. Benchmark Evaluation of Detector-Descriptor

To evaluate the performance of the proposed segmentation
based feature detection approach for wide-baseline matching
we present a comprehensive comparison with existing state-
of-the-art feature detector and descriptor combinations. Com-
parison is performed with binary (FAST [18], ORB [19],
BRIEF [55]) and floating point (Harris [1], GFTT [56],

SIFT [3], SURF [4], STAR [8], MSER [7], KAZE [6], A-
KAZE [18]) detectors. These detectors are combined with fea-
ture descriptors (BRIEF [55], ORB [19], SIFT [3], SURF [4]).
We evaluated performance of different segmentation tech-
niques. Adjacent pairs of images are taken from each dataset
and segmentation is performed using Watershed, Mean-Shift
and SLIC giving three variants SFD-WA, SFD-MS and SFD-
SLIC respectively.

A single orientation value is used for each similar descriptor
assignment for all detectors including SFD and MSFD for
fair comparison. We have paired descriptors to detectors
based on their optimum performance. For example: SIFT,
SURF, KAZE, A-KAZE, BRIEF, and ORB are paired with
their respective descriptors. Detectors for which no specific
descriptors are available, has been paired according to the
floating point and binary classification. For example: FAST
with BRIEF, MSER with SIFT. SFD is tested with both binary
(BRIEF) and floating point (SIFT) descriptor. For SIFT, SURF,
STAR, ORB, FAST, MSER, Harris and GFTT we use the
OpenCV based implementation. For KAZE and A-KAZE the
implementation available from the paper [6], [18] is used. The
feature detection thresholds of the different methods are set to
values to detect approximately the same number of features
per image as shown in Table II. Feature matches for MSER,
SIFT and A-KAZE feature detectors are shown in Figure 7
against SFD-WA.
Scene Coverage: The distribution of the features across the
scene is shown in Figure 7 for different detectors: Proposed
SFD with WA, SIFT, MSER. SFD gives improved scene
coverage with higher quantity and improved distribution of
features across the scene for all the datasets.

Segmentation Watershed Mean-Shift SLIC
Dataset |F ∗| TC RC |F ∗| TC RC |F ∗| TC RC
Odzemok 8169 6543 3717 7908 5913 3547 8093 7812 4921
Dance1 8242 6372 3394 7956 5652 3087 8305 7499 4459
Office 8074 6501 3508 7822 5908 3321 7998 7667 4768
Magician 7921 5057 2844 7878 4524 2698 7909 6629 3066
Rossendale 6576 4528 2332 6349 4075 2118 6542 4786 2972
Cathedral 7806 6324 3452 7747 6450 3601 7983 6161 3882
Patio 7207 5215 3270 7156 5309 3431 7176 5642 3986
Juggler 5231 4478 2342 5196 4563 2267 5435 4657 2878
Building 4981 3531 1983 4809 3467 2067 4943 3791 2240
Books 4877 3348 2019 4796 3259 1984 4814 3429 2319
Cloth 4532 3424 1732 4321 3349 1689 4559 3568 1981
Architecture 4790 3213 1654 4683 3563 1780 4897 3664 2091
Merton 9947 7644 4533 9817 6899 4485 10336 8899 5920
Valbonne 3251 2715 1135 2939 2217 1252 3065 2952 1981
Castle 5674 4043 2351 5547 4146 2474 5848 4420 2559
Car 7764 4915 3435 7939 5017 3552 8065 5152 3975

TABLE III
FEATURE DETECTION AND MATCHING OF SFD FOR THREE DIFFERENT

SEGMENTATION APPROACHES (BEST HIGHLIGHTED IN BOLD): F ∗ IS THE
NUMBER OF FEATURES DETECTED, TOTAL COUNT (TC) IS THE NUMBER
OF MATCHES WITH BRUTE FORCE MATCHING USING A SIFT DESCRIPTOR

AND RANSAC COUNT (RC) IS THE NUMBER OF CORRESPONDENCES
THAT ARE CONSISTENT WITH THE RANSAC BASED REFINEMENT.

Feature matching evaluation The proposed SFD detection
is performed on each pair of images for each segmentation
method followed by feature matching using a descriptor.
An exact nearest-neighbour matching algorithm is applied,
followed by a ratio test as explained in [3] is used to evaluate
the feature detector. All of the matches whose distance ratio
is greater than 0.85 are rejected, which eliminates 90% of
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Fig. 8. Evaluation of number of correct matches on all datasets. The number
of matches are shown on top of each bar.

Dataset SIFT A-KAZE KAZE SURF MSER SFD-WA
Odzemok 1244 1179 1322 689 313 1615
Dance1 1087 1064 1159 622 301 1540
Office 1198 1121 1263 655 304 1519
Magician 772 757 821 427 264 1376
Rossendale 226 496 237 212 125 1277
Cathedral 965 1136 969 919 424 1447
Patio 824 1204 1117 905 423 1503
Juggler 206 1298 669 255 128 1612
Building 618 640 629 581 257 1538
Books 772 814 683 682 372 1615
Cloth 611 831 755 703 439 1432
Architecture 705 893 827 749 447 1454
Merton 1230 1487 1387 1653 879 1791
Valbonne 606 741 689 1129 339 1655
Castle 648 819 851 982 365 1531
Car 993 1197 1043 1630 463 1735

TABLE IV
NUMBER OF MATCHES (TC) OBTAINED FOR EXISTING FEATURE

DETECTORS AND SFD, WHEN THE INITIAL NUMBER OF DETECTED
FEATURES WERE CONSTRAINED TO 2000 FOR ALL DATASETS.

Fig. 9. Evaluation of matching score (MS = TC/F ) on all datasets.

Fig. 10. Evaluation of matching score (MS = TC/F ) for existing
feature detectors and SFD, when the initial number of detected features were
constrained to 2000 for all datasets.

false matches and 5% of the correct matches [3]. After
obtaining a set of refined matches, a left-right symmetry test
is used to further remove inconsistent matches due to repeated
patterns. This is followed by RANSAC based refinement [57]
of matches without prior knowledge of camera parameters.
The fundamental matrix is estimated using RANSAC and the
inliers are chosen as the set of matches.

Experimental results for a pair of image for each dataset and
all segmentation methods (WA, MS and SLIC) are summarized
in Table III. The column headed ‘|F ∗|’ shows the number of
features detected in one of the images. Total count (TC) is the
number of matches obtained with brute force matching using
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MSER SIFT A-KAZE SFD-WA
Dataset RC MRE RC MRE RC MRE RC MRE
Odzemok 119 1.390 1269 1.175 1209 1.181 3717 1.351
Dance1 102 1.362 1109 1.231 1081 1.214 3394 1.251
Office 111 1.431 1203 1.403 1143 1.361 3508 1.354
Magician 72 1.255 786 1.104 764 1.045 2844 1.195
Rossendale 26 1.411 237 1.323 516 1.318 2332 1.315
Cathedral 24 1.386 969 1.152 1158 1.154 3452 1.179
Patio 24 1.396 832 1.223 1207 1.212 3270 1.256
Juggler 28 1.298 208 1.155 686 1.110 2342 1.237
Building 57 1.240 629 1.103 689 1.120 1983 1.221
Books 72 1.314 783 1.210 832 1.223 2019 1.207
Cloth 40 1.211 636 1.098 845 1.201 1732 1.159
Architecture 49 1.273 719 1.192 905 1.206 1654 1.211
Merton 81 1.255 1272 1.177 1509 1.196 4533 1.175
Valbonne 41 1.258 636 1.181 755 1.187 1135 1.159
Castle 67 1.318 695 1.171 835 1.152 2351 1.208
Car 65 1.330 1018 1.213 1207 1.200 3435 1.183

TABLE V
EVALUATION OF MATCHING ACCURACY OF SFD AGAINST MSER, SIFT

AND A-KAZE USING THE GROUND-TRUTH RECONSTRUCTION AND
CAMERA CALIBRATION.

a SIFT descriptor and RANSAC count (RC) is the number of
correspondences that are consistent with the RANSAC based
refinement performed after the ratio and symmetry tests. The
number of features detected by all segmentation techniques are
similar. The numbers of matches reduces by 30 − 40% after
refinement using the symmetry and RANSAC tests (RC).

Figure 8 presents the number of wide-baseline matches
(RC) and Figure 9 presents the matching score (MS =
TC/F ) for following detector-descriptor assignments: A:
FAST-BRIEF, B: Harris-SIFT, C: GFTT-SIFT, D: MSER-
SIFT, E: ORB-ORB, F: STAR-BRIEF, G: BRIEF-BRIEF, H:
SIFT-SIFT, I: SURF-SURF, J: KAZE, K: A-KAZE, L: SFD-
WA-BRIEF, M: SFD-WA-SIFT, N: SFD-MS-BRIEF, O: SFD-
MS-SIFT, P: SFD-SLIC-BRIEF and Q: SFD-SLIC-SIFT. We
choose matching score as one of our evaluation parameter for
fair evaluation as it removes the bias in having more keypoints.

Performance of the proposed SFD detector combined with
WA, MS and SLIC segmentation techniques with BRIEF and
SIFT descriptors is shown in bars labelled L - Q, respectively
demonstrating that the approach consistently achieves a factor
of 3−10 increase in the number of correct matches and factor
5 − 8 in the matching score compared to previous detector-
descriptor combinations.

To demonstrate that the proposed SFD features deliver both
better results with the same number of keypoints, and achieves
a greater number of matches than other methods, we restrict
the number of keypoints detected to 2000. The number of
matches TC obtained using each method is listed in Table
IV and the matching score defined as TC/2000 is plotted in
Figure 10, demonstrating consistently improved performance
obtained using SFD in the matching score.
Matching accuracy evaluation: For further evaluation this
section compares the feature matching accuracy of SFD
against MSER, SIFT and A-KAZE. We choose only these
detectors because they outperform the other feature detection
methods for wide-baseline matching. SFD-WA is chosen as
our base segmentation technique. The aim is to evaluate the
accuracy of each feature correspondence. The ground-truth
camera calibration and reconstruction is used for evaluation of
the accuracy of the feature matches for all datasets. Ground-

Fig. 11. Accuracy results for dynamic datasets: Re-projection error cumulative
distribution of SIFT, A-KAZE and SFD-WA

truth camera calibration (intrinsic and extrinsic) is known and
reconstruction is available for static indoor datasets and for
other datasets the reconstruction is computed using existing
reconstruction algorithms [53]. The accuracy is evaluated
using the projection of a 3D point which gives the ground-
truth match for a point in pair of images. The error between
the ground-truth match and the match obtained for different
feature detection approaches gives the measure of accuracy.

Ground-truth correspondences are obtained by back-
projecting the 3D location of the feature points detected in
one image to the other image and evaluating the distance to
the estimated feature match. Mean re-projection error (MRE)
given in Equation 3 is used for accuracy evaluation of the SFD
feature matches again the ground-truth.

MRE =
1

(K + 1)

K∑
0

√
(x− x′)2 + (y − y′)2 (3)

where (x, y) is the estimated SFD feature match, (x′, y′) is the
re-projected point, and K is the number of feature matches,
here K = RC.

Table V presents the results of the ground-truth correspon-
dence for the proposed SFD using Watershed segmentation
with a SIFT descriptor for matching and three other detector-
descriptor combinations representing state-of-the-art detectors-
descriptors (MSER-SIFT, SIFT-SIFT and A-KAZE-A-KAZE).
RC shows the number of correspondences obtained with each
approach after symmetry and RANSAC consistency tests. The
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number of matches obtained with the proposed SFD feature
detector is greater by an order of magnitude than MSER, and
by a factor three greater than SIFT and A-KAZE. The MRE
for SFD is lower compared to MSER and comparable with
SIFT and A-KAZE within approx. ±0.2 pixels.
MRE gives an overall comparison of the accuracy of the

feature matches, however the distribution of the matches at
different pixel errors is not clear. Although the MRE of SFD
is comparable with existing feature detectors, it is noted that
SFD gives large number of matches and it would be interesting
to see the comparison of number of matches at each pixel error
against existing detectors. The more the number of matches at
lower pixel error the better the accuracy of the feature detector.
Hence to evaluate this re-projection error is calculated using
the ground-truth reconstruction for each feature match. The
errors are ranked from low to high and a graph is plotted for
the number of feature matches at each pixel error.

The comparative evaluation of the re-projection errors for
all the correspondences obtained by SIFT, A-KAZE and SFD
is plotted and results for 2 datasets from each category are
shown in Figure 11. This figure shows that the number of
wide-baseline matches for a given maximum re-projection
error are consistently greater for SFD detection than for SIFT
and A-KAZE. Approximately three times more points have
less than 1 pixel error for SFD compared to SIFT and A-
KAZE depicting the relatively high accuracy of the proposed
method. This implies that taking the best N features from SFD
will give higher accuracy calibration/reconstruction than for
SIFT feature detection. Therefore SFD gives more accurate
geometry estimation from wide-baseline views due to the
improved accuracy of feature localization demonstrating the
suitability of SFD for sparse 3D scene reconstruction.
Reconstruction accuracy evaluation: The accuracy and the
suitability of features for wide-baseline reconstruction is evalu-
ated for complex environments on a variety of datasets in this
section. We measure the reconstruction accuracy evaluation
(RA) of SFD, defined as RA = Correct Matches

RC using the ground-
truth information for Odzemok dataset. We eliminate the
matches from RC with MRE greater that 2.5 pixels to obtain
the ‘Correct Matches’, which is a standard setting to allow
noise variance [53]. The comparisons with FAST, MSER,
ORB, SIFT and A-KAZE are shown in Figure 12 for dynamic
and in Figure 13 for static indoor and outdoor datasets. On
left results are shown between testing images 1-2, 1-3, ..., 1-
7 with baseline 15◦-120◦and on the right for adjacent image
pairs with baseline 15◦-30◦.

The reconstruction accuracy evaluation of SIFT, A-KAZE
and SFD detector is comparable and greater than other detec-
tors like FAST, ORB and MSER. Watershed segmentation per-
formed consistently better than other segmentation methods.
As the baseline between the image pairs increases, the overlap
between the images reduce which results in decrease in the
number of matches (RC). It is noted that the reconstruction
accuracy for each feature detector reduces with the increase
in baseline which indicates a drop in the percentage of correct
matches from the set of matches (RC). The drop in the
reconstruction accuracy is similar for SFD, SIFT, A-KAZE
and MSER. However, the percentage of correct matches for

Fig. 12. Reconstruction accuracy evaluation results for dynamic datasets:
Left: Comparison for matching of camera 1 to all other views (15-120 degree
baseline); and Right: Comparison for matching between adjacent views (15-30
degree baseline).

SFD is slightly higher than existing approaches, as seen from
the Figure. The FAST and ORB detectors does not perform
well for wide-baseline images.
Time performance: Figure 14 presents the average compu-
tation time/frame showing that the computational time is less
than floating point detectors and similar to binary detectors.
SFD-WA is the fastest detector compared to MS and SLIC,
but the number of correct matches are highest for SLIC. MS
gives lower number of correct matches compared to both
WA and SLIC. The evaluation shows a trade-off between the
performance and the number of correct matches for various
segmentation techniques. The matching performance of detec-
tors varies with the descriptor assignment. SFD works better
with SIFT descriptor compared to BRIEF descriptor. This is
expected as SFD is a floating point detector.

B. Multi-scale feature detection evaluation

Multi-scale evaluation is performed by feature detection
and matching between pairs of images at difference scales
for datasets from each category. The datasets are selected
randomly for experimentation. Number of accurate matches
(RC) and the percentage (R) of matches is evaluated, such
that
R = 100× Matches from one image at original scale and other downscaled

Matches from pair of images at original scale ,
where S1 = 0.25 or S2 = 2. The results are shown in
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Fig. 13. Reconstruction accuracy evaluation results for static datasets: Left:
Comparison for matching of camera 1 to all other views (15-120 degree
baseline); and Right: Comparison for matching between adjacent views (15-30
degree baseline).

Odzemok Magician Patio Juggler Building Books Merton Valb

1

S1 952 605 640 151 513 596 979 497
R 75.1 76.2 76.9 72.5 81.5 76.1 76.9 78.1
S2 1072 658 692 166 547 642 1064 538
R 84.4 83.7 83.1 79.8 86.9 81.9 83.6 84.5

2

S1 901 579 921 517 551 631 1149 558
R 74.6 75.9 76.3 75.5 79.8 75.9 76.2 74.1
S2 1027 645 1019 583 581 693 1284 611
R 85.2 84.5 83.8 84.9 84.2 83.4 85.1 80.9

3

S1 1044 965 1012 797 851 910 1232 344
R 28.0 33.9 30.9 34.0 42.9 45.0 27.1 30.3
S2 1851 1354 1471 1174 958 1033 2189 586
R 49.8 47.6 44.9 50.1 48.3 51.2 48.3 51.6

4

S1 2896 2301 2972 1894 1804 1855 3681 1178
R 73.9 75.6 83.6 74.8 81.3 78.2 79.4 76.3
S2 3419 2561 3015 2264 1919 1967 4110 1337
R 87.3 84.1 84.9 89.3 86.4 82.9 88.7 86.6

TABLE VI
MULTI-SCALE FEATURE DETECTION EVALUATION SHOWING NUMBER OF

FEATURE MATCHES AND R IN % AT SCALE S1 = 0.25 AND S2 = 2 FOR
DIFFERENT DETECTORS: 1. SIFT, 2. A-KAZE, 3. SFD-WA AND 4.

MSFD-WA.

Table VI for two datasets from each category. The number
of correct matches are reduced with scale change compared
to the original number of matches shown in Table V for
respective datasets for all feature detection techniques (SIFT
and A-KAZE by ≈ 76%, SFD-WA by ≈ 34% and MSFD-
WA by ≈ 78% for scale S1 = 0.25) (SIFT and A-KAZE
by ≈ 84%, SFD-WA by ≈ 49% and MSFD-WA by ≈ 87%
for scale S2 = 2). There is a significant improvement in
the number of matches and percentage of original matches

Fig. 14. Evaluation of time for detecting features on a wide-baseline stereo
pair for each sequence in ms for all datasets.

(R) with scale change over SFD feature detection. Also, the
number of correct matches obtained using Multi-scale SFD are
approximately 2−3 times higher compared to existing feature
detection techniques (SIFT and A-KAZE) with approximately
same percentage drop (R) in the matches.
DTU Robotics dataset [17]: We have evaluated MSFD-WA
with SIFT descriptor against existing feature detectors (A-M)
on the DTU Robotics dataset which consists of 60 sequences
as in [32]. We have restricted the number of features to
4000 for each detector and all sequences. The inlier ratio
(RC/F) results are shown in Figure 15 and the matching score
(MS = TC/F ) results are shown in Figure 16 demonstrating
the improved performance using MSFD against state-of-the-art
feature detectors.

C. Application to Wide-baseline Reconstruction

Wide-baseline sparse scene reconstructions are presented
for all the datasets in Figure 17. Reconstructions obtained
using the proposed SFD features are compared with those
obtained using the SIFT and A-KAZE detectors, in all cases
the SIFT descriptor is used for matching. As expected from
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Fig. 15. Inlier-ratio comparison for DTU dataset for proposed MSFD and
SFD detector against existing detectors.

Fig. 16. Matching score comparison for DTU dataset for proposed MSFD
and SFD detector against existing detectors.

Fig. 17. Results of multi-view sparse reconstruction for all datasets for SIFT,
A-KAZE and SFD-WA .

Fig. 18. Results of multi-view dense reconstruction for Odzemok and Juggler
datasets for SIFT and SFD-WA .

the evaluation of wide-baseline matching presented above
the number of reconstructed points is much higher with the
proposed approach as shown in Table VII with WA, MS and
SLIC. From Figure 17 it can be observed that sparse wide-
baseline reconstruction based on SFD gives a significantly
more complete representation of the scene (evaluation of the
accuracy against ground-truth reconstruction for all datasets
was presented in Table V).

Dataset MSER SIFT A-KAZE SFD-WA SFD-MS SFD-SLIC
Odzemok 171 1884 4025 12385 9087 14515
Dance1 153 1652 3599 13603 8026 11302
Office 165 1792 3806 11681 8034 14109
Magician 128 1171 2544 9470 7014 9360
Rossen. 58 526 1145 2213 1017 3983
Cathedral 72 2153 2570 10840 9733 12895
Patio 61 1847 2679 8845 7261 7259
Juggler 67 461 1522 7211 6501 8102
Building 249 2788 2984 8606 6939 7660
Books 312 3398 3610 8762 7009 8610
Cloth 175 2760 3667 7516 5958 7634
Archi. 210 3107 3929 7725 6019 7178
Merton 316 2760 3274 9619 8118 10965
Valbonne 258 1380 1637 4084 3369 5121
Castle 261 1508 1811 5368 4333 4854
Car 252 2208 2619 7705 6755 7184

TABLE VII
EVALUATION OF THE NUMBER OF SPARSE 3D POINTS FROM PAIR-WISE

RECONSTRUCTION

Dataset MSER SIFT A-KAZE SFD-WA SFD-MS SFD-SLIC
Odzemok 1197 9246 16163 24876 22474 26961
Juggler 335 2535 4849 11277 10918 13289
Building 1743 12910 17573 23218 22596 22842
Valbonne 2542 12320 15263 27563 25546 29839

TABLE VIII
EVALUATION OF THE NUMBER OF SPARSE 3D POINTS FROM VSFM WITH

MSER, SIFT, A-KAZE AND SFD ON ONE DATASET FROM EACH
CATEGORY ON ALL VIEWS EXCEPT FOR BUILDING, WHERE 16

WIDE-BASELINE VIEWS ARE SELECTED.

For further evaluations we replaced the feature detection in
the Visual SFM [58] pipeline with MSER, SIFT, A-KAZE and
SFD features. The number of reconstructed points is shown in
Table VIII. We have also evaluated the dense reconstruction
obtained using SIFT and SFD detectors on a standard pipeline,
results are shown in Figure 18.

The feature detection thresholds of the different methods
are set to detect approximately the same number of features
per image initially. However, the number of feature matches
and sparse 3D points is much lower for SIFT and A-KAZE
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compared to SFD, showing the stability of SFD feature
points. Hence, the SFD based dense reconstruction gives more
complete coverage of scene compared to other detectors.
Dense reconstruction and registration based on SFD features
is demonstrated in [59] and [51] respectively for challenging
datasets.

D. Limitations

Evaluation has been performed across a wide-variety of
indoor and outdoor scenes to identify the limitations of SFD
feature detection in the context of wide-baseline matching. As
with other feature detection approaches the method is depen-
dent on variation in surface appearance and consequently will
produce fewer and less reliable features in areas of uniform
appearance, or repetitive background texture like trees, sky
etc. However, as demonstrated in the evaluation SFD increases
the number of features and scene coverage for wide-baseline
matching compared to previous approaches.

VII. CONCLUSION

In this paper we have proposed a novel multi-scale feature
detector MSFD for wide-baseline matching and sparse scene
reconstruction. The approach is based on over-segmentation
of the scene and detecting features at intersections of three
or more region boundaries. This approach is demonstrated to
give stable feature detection across wide-baseline views with
an increased number of features and more complete scene
coverage than popular feature detectors used in wide-baseline
applications. MSFD is shown to give consistent performance
for different segmentation approaches (Watershed, Mean shift,
SLIC), with SFD-SLIC giving a marginally higher number of
features. The speed of SFD feature detection is comparable
to other methods for wide-baseline matching. A multi-scale
segmentation based feature detection is introduced to achieve
scale invariance giving improved performance against existing
feature detection techniques.

A comprehensive performance evaluation against previous
feature detectors (Harris, SIFT, SURF, FAST, ORB, MSER,
KAZE, A-KAZE) in combination with widely used feature
descriptors (SIFT, BRIEF, ORB, SURF) demonstrates that
the proposed multi-scale segmentation based feature detector
MSFD achieves a factor of 3 − 10 times more wide-baseline
feature matches for a variety of indoor and outdoor scenes.
Quantitative evaluation against ground-truth of SFD vs. SIFT,
MSER, and A-KAZE feature detectors shows that for a given
error level MSFD gives a significantly larger number of
features. Improved accuracy in feature localisation with SFD
results in more accurate camera calibration and reconstruction
of sparse scene geometry.

Application to stereo sparse reconstruction from wide-
baseline camera views demonstrates that the MSFD feature
detector combined with a SIFT descriptor achieves a sig-
nificant increase in the number or reconstructed points and
more complete scene coverage than SIFT detection. Further
plans include evaluating the utility of MSFD features in
applications such as camera tracking and object recognition
and the integration with deep learning approaches to detection

and matching to achieve greater generalisation across scenes
while maintaining or improving performance.
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