
Hybrid Skeleton Driven Surface Registration for
Temporally Consistent Volumetric Video

João Regateiro Marco Volino Adrian Hilton
Centre for Vision, Speech and Signal Processing

University of Surrey
{j.regateiro, m.volino, a.hilton} @surrey.ac.uk

Abstract

This paper presents a hybrid skeleton-driven surface reg-
istration (HSDSR) approach to generate temporally consis-
tent meshes from multiple view video of human subjects.
2D pose detections from multiple view video are used to
estimate 3D skeletal pose on a per-frame basis. The 3D
pose is embedded into a 3D surface reconstruction allow-
ing any frame to be reposed into the shape from any other
frame in the captured sequence. Skeletal motion transfer
is performed by selecting a reference frame from the sur-
face reconstruction data and reposing it to match the pose
estimation of other frames in a sequence. This allows an
initial coarse alignment to be performed prior to refine-
ment by a patch-based non-rigid mesh deformation. The
proposed approach overcomes limitations of previous work
by reposing a reference mesh to match the pose of a tar-
get mesh reconstruction, providing a closer starting point
for further non-rigid mesh deformation. It is shown that the
proposed approach is able to achieve comparable results to
existing model-based and model-free approaches. Finally,
it is demonstrated that this framework provides an intuitive
way for artists and animators to edit volumetric video.

1. Introduction

Motion capture (MoCap) using optical markers is the
gold standard for human performance capture, and is widely
used in industry, but only captures a low-dimensional rep-
resentation of the human body, i.e. joint positions/angles. It
requires a huge effort from artists to create believable char-
acter animations from MoCap data. To overcome this draw-
back, multiple view video capture techniques have evolved
towards simultaneously capturing shape, motion and ap-
pearance.

Modern capture systems generally consist of a set of syn-
chronised cameras that simultaneously capture the scene
from different viewpoints [10, 11, 28]. Feature tracking and

Figure 1. Processing stages of the proposed method: (left to right)
Source mesh, target mesh reconstruction, 3D pose, reposing of
source mesh using linear blend skinning and proposed aligned re-
sult.

stereo matching techniques are applied to the data to create
a 3D reconstruction of both static and dynamic scenes. 3D
Performance Capture results in a sequence of 3D geome-
try objects of the actor or scene, integrating all visual fea-
tures, such as dynamic shape, motion, and texture appear-
ance. However, a problem arises where for each of the cap-
tured frames the geometry is temporally inconsistent, i.e.
the shape topology and vertex connectivity are varying.

Post-processing methods suffer from temporally incon-
sistent geometry, making it extremely difficult to propagate
changes throughout a sequence. This content challenges
most existing methods, as a consequence of the diversity in
human motion and shape, and dynamic surfaces; it demon-
strates difficulty on dense point-to-point correspondence
schemes. Artists very often manually manipulate content to
achieve the desired pose, or correct the geometry, spending
significant work-time on such laborious task.

This work proposes an automated hybrid framework
to generate temporally consistent reconstructions from dy-
namic mesh sequences. The core idea of the proposed ap-
proach is to embed a skeleton into a surface reconstruction
and repose the shape prior to geometric alignment, see Fig-
ure 1. By performing a coarse alignment, as a pre-process,
the proposed approach is able to handle large changes in
pose between a reference and target shape. We also demon-
strate that the resulting temporally consistent mesh repre-
sentation can be used to facilitate keyframe-based editing
for volumetric video.



The contributions of this paper can be summarised as
follows:

1. A 4D surface tracking framework to temporally align
mesh surfaces with inconsistent topology and differ-
ence in shape. The framework successfully maps a
mesh surface onto a target using only geometry infor-
mation.

2. A hybrid skeleton-driven surface registration (HS-
DSR) to overcome the limitations of the 4D surface
tracking framework, achieving more reliable and ac-
curate results for complex mesh sequences. It pro-
vides results for longer sequences without the increase
or propagation of errors generated in previous frames.

3. Keyframe-based editing for volumetric video to allow
intuitive editing and propagation through a sequence,
it generates novel sequences avoiding the need to re-
capture new datasets, maintaining surface detail and
integrity.

2. Related Work
Human Motion Capture: Skeleton based techniques arise
from the necessity of simulating human body motion. Mo-
Cap [22] estimates human movement based on tracking its
skeleton using markers placed on key locations. Recent
work from Wei et al. [32] introduces deep learning tech-
niques to overcome a registration problem between com-
plete or partial 3D models. They successfully demonstrate
the benefits that deep learning offers to track human body
poses with a real-time human body correspondence frame-
work.

Convolutional Pose Machines (CPMs) [8] learn how to
associate body parts to human-like shapes from a single im-
age and estimate 2D human joints locations for multiple
people. This allows more freedom on the type of data cap-
tured, because it does not rely on physical trackers, there-
fore the system is able to preserve all dynamics from the
captured scene, such as clothing deformation and fine detail.
A central challenge in computer vision over the past two
decades has been markerless human motion capture from
video [16, 21, 29, 33].

Surface reconstruction from multiple view video cap-
ture generates unstructured mesh sequences with both the
vertex connectivity and geometry changing from frame-to-
frame [11, 28]. To overcome this issue, methods for tem-
poral alignment of mesh sequences have been introduced to
obtain sequences with temporally consistent mesh structure
[4, 6, 31]. Model-based techniques allow for a better mesh
representation, including fine detail and body shape char-
acteristics, however it requires prior information computa-
tions and it cannot reproduce accurately the scene captured,
such as clothes and hair dynamics [31, 33]. Model-free

approaches overcome limitations raised from model-based,
obtaining a better representation of the captured scene, as
result of not being tied to a parameterized template, how-
ever this raises problems such as, surface drifting, the accu-
mulation of errors, and the inability of tracking two signif-
icantly different poses. Temporally inconsistent geometry
does not ease the manipulation of mesh sequences, increase
physical storage space, and requires a huge effort to create
animation.

Geometry Alignment: Geometry alignment techniques re-
quire the establishment of correspondences between frames
so it can correctly align meshes for every frame [2,7,9,30].
Lipman and Sorkine et al. [19, 26, 34] propose a differen-
tial coordinate representation of a surface mesh, which pre-
serves local detail information in the presence of large mesh
deformations.

Huang et al. [15] presents a volumetric approach for 3D
shape tracking that uses centroidal Voronoi tessellation rep-
resentation to build a feature space where trained random
forests return optimal correspondences. However, volu-
metric techniques tend to preserve the volume from frame
to frame, therefore if the volume has a significant change
the technique is not able to adapt. Coarse-to-fine match-
ing demonstrates success for non-rigid registration [5, 24]
across complex sequences, and is achieved by targeting sub-
sets of a surface area and interactively decreasing its radius,
preserving fine details such as dynamic clothing. These
approaches focus on deforming a single reference frame
through subsequent frames of the sequence, leading to the
increase of artefacts on large changes in shape.

Non-sequential alignment approaches have also been in-
vestigated [3,4,17,23], providing robust techniques that are
able to handle larger non-rigid deformations in consecutive
meshes of the reconstructed captured sequences. However,
the shape comparison in the above techniques is computa-
tionally expensive and requires a full sequence as a prior,
disallowing online applications.

3. Hybrid Skeletal-driven Surface Alignment
The objective of the proposed approach is to extract a

temporally consistent mesh structure from multiple view
video of a human actor. We estimate a 3D surface at each
time instance t using a model-free reconstruction pipeline,
described in Section 3.1, resulting in a temporally incon-
sistent mesh representation for a captured sequence. A 2D
joint detector is utilised to first estimate 2D skeletal pose in
each camera view at every time instance t. 2D joint loca-
tions are triangulated to estimate the 3D pose using a kine-
matic solver, described in Section 3.2. 3D skeletal pose is
used to rig the reconstruction for a reference frame from
the sequence to obtain an animatable representation of the
specific person and their clothing. The animated reference
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Figure 2. Proposed Hybrid Skeleton-driven surface registration pipeline, going from left to right, we have a multiple view capture system
to retrieve shape and appearance. Followed by 2D pose detection and shape reconstruction, to retrieve 3D skeletal and surface vertex
correspondence. Finalising with shape reposing to provide an initial pose estimation to the geometric alignment method.

frame is reposed using the 3D skeleton estimate for each
frame to obtain a course alignment between the reference
frame and target reconstruction, described in Section 3.3.
Non-rigid patch-based Laplacian deformation is then used
for detailed temporal alignment through non-rigid deforma-
tion of the reference surface, described in Section 3.4. This
allows the correct alignment in sequences that include large
changes in pose from frame-to-frame due to fast motion.
An overview of the proposed hybrid skeleton-driven surface
registration pipeline is shown in Figure 2.

3.1. Multiple View Surface Reconstruction

Input into our method is synchronised multiple view
video ffItcg

NC
c=1g

NT
t=1 recorded from NC calibrated cameras

fCcgNC
c=1, where NT is the number of frames, of a human

actor in a controlled studio, see Figure 2. Shape reconstruc-
tion is performed by first extracting foreground silhouettes
via chroma-keying allowing a visual hull [18] reconstruc-
tion at each time instance t. The visual hull is then re-
fined using a volumetric graph-cut by matching stereo fea-
tures across camera images ffItcg

NC
c=1g to make the geome-

try photo-consistent [28]. Stereo refinement adds geometric
detail to concave regions of the surface which cannot be
recovered using visual hull reconstruction. This process re-
sults in a set of temporally incoherent meshes which have
been independently reconstructed at each time instance.

3.2. 2D/3D Pose Estimation

2D Joint Detection: Given a set of captured images at a
single time instance, ffItcg

NC
c=1g, we use a 2D pose detec-

tor to locate the skeletal joints of the subject. In the pro-
posed pipeline, 2D joint detections are given by Convolu-
tional Pose Machines (CPM) [8] which have been shown to
be a robust 2D pose detector trained on a wide variety of
subjects and poses. The detected 2D joint jci = fpci ; !ci g
consists of a 2D pixel location pci and confidence score !ci .

Joint Triangulation: Triangulation of each joint requires
the detected 2D joint locations of the ith joint from each
camera fjci g

NC
c=1, the camera intrinsic parameters Kc, rota-

tion matrix Rc and translation vector tc for all NC cam-
eras. We seek to find 3D position ĵi for the ith joint that
minimises the re-projection error in all camera against the
detected 2D joints fjci g

NC
c=1. The 3D joint position ĵi is op-

timised according to Equation 1. This incorporates the joint
confidence !ci to make it robust against errors in joint de-
tection. In the case that a joint is not detected, !ci = 0.

arg min
ĵi

NcX
c=1

!ci jjP (c; ĵi)� pci jj (1)

where pci and !ci are the 2D detected joint location and joint
confidence, respectively, for the ith joint in the cth camera.
P (c; ĵi) is the projection function which maps a 3D joint
position into the camera image plane P (c; ĵi) = KcRcĵi +



tc. ĵi is the optimised 3D position of the ith joint.
The collection of 3D joints positions ĵi represent a skele-

tal structure at a time instance t. We define a skeletal struc-
ture as containing 16 3D joint positions ĵi and 15 bones b̂ij .
The bone b̂ij = fĵi; ĵjg is the relation between the ith and
jth joints. This leads to a hierarchy relationship between
bones to create a kinematic structure that allows for skele-
ton animation.

Kinematic Structure: A kinematic structure can be repre-
sented as a bi-directional graph, where nodes represent 3D
joint positions ĵi, and edges represent bones b̂ij = fĵi; ĵjg.
Each node has an associated a rotationRi and translation ti,
defined as a transformation Ti = Ri(�)ti(�), whereRi(�)
is an axis-angle rotation of � degrees, and ti(�) is a transla-
tion of the vector �. Consequently, the joint transformation
Ti is represented as a 4 � 4 transformation matrix at each
time instance.

Let us consider the skeletal sequence denoted Ŝ as a col-
lection of skeletal poses that represent all the 3D joint posi-
tions ĵi and bones b̂ij = fĵi; ĵjg for the captured sequence.
Hence, a skeletal structure at a time instance t is defined as
ŝt = fĵi; b̂ijg. The sequence Ŝ can only inform about the
joints location and relationship, therefore to produce anima-
tion it is necessary to calculate the joint transformations that
maps one frame ŝt into ŝt+1. The kinematic structure trans-
forms an initial pose � onto ŝt, translating the motion from
the captured sequence Ŝ to kinematic skeletal joint motion.
The initial pose � is a kinematic structure, composed of 16
nodes NN and 15 edges NB . Each edge has nodes asso-
ciated, describing the dependency between nodes; nodes
contain a transformation matrix Ti to calculate their spatial
transformation from frame-to-frame relative to its parent.

Kinematic Motion: To represent kinematic motion, we se-
lect an initial frame ŝt and initialise pose � as the reference
pose. This work selects the first frame of the sequence as
the initial pose �. Once � is solved for the first ŝt frame,
we calculate an initial list of nodes transformation Ti that
relate to the first frame. Consequently, it is possible to map
� into any Ŝ given the initial estimation of the position and
orientation. The pose � is solved by calculation node trans-
formations that satisfy the constraints given by ŝt.

The node transformation is solved using an inverse
and forward kinematic chain approach, Equation 2, where
�(b̂B) is a set of parent nodes of the bone fb̂bgNB

b=1 = b̂ij ,
and [Rb̂b

jtb̂B
] is the transformation matrix of the bone b̂B ,

forward kinematics uses the opposite direction of transfor-
mation, i.e. the transformation is propagated from a node
to all its descendents. Firstly, the global transformations
of key joints are retrieved, using the hip joint as the root
transformation relative to the initial pose �. Secondly, we
identify the rotation of the upper body, i.e. the rotation of

the shoulders given by its parent joint - the neck in this in-
stance. Finally, we retrieve the head orientation to be able
to change the head rotation independent from the rest of the
body. The remaining limbs are solved using inverse kine-
matics to give an initial estimate of their possible locations
using the extremity joint as end-effectors. This approach
allows for errors caused by incorrect or non-existent 2D de-
tection.

The final step is a refinement of joint positions using
forward kinematics to eliminate ambiguities caused by the
previous step. The different skeleton poses are represented
with the initial pose � and a collection of node transforma-
tions Ti which allows the reposing of � to all frames in Ŝ.
For every frame ŝt 2 Ŝ, pose � is mapped onto ŝt using
� = %(ŝt; Ti), where %(ŝt; Ti) solves Ti for the new set of
ŝt constraints using an inverse and forward kinematic chain
approach.

�(b̂b) = �NB

b̂b2�(b̂b)

"
Rb̂b

tb̂b

0 1

#
(2)

This gives a sequence of skeletal poses based on joint rota-
tions from the estimated skeletal joint positions obtained by
combining multiple view 2D pose using equation 1

3.3. Skeleton Embedding and Shape Reposing

Rigging and animating a reference frame mesh is
achieved using an automated rigging framework [1]. Given
a template reference frame and its skeleton reference pose,
skinning weights for every vertex are estimated according
to the set of nearest bones. Once the weights are calculated,
we choose to use linear blend skinning (LBS) to repose the
reference mesh. The animation framework receives as in-
put an initial pose �, a collection of joint transformations Ti
and the vertex weights. This allows the reference mesh to
be reposed according to the detected 3D pose for each frame
in the sequence to obtain an initial coarse mesh approxima-
tion of the surface shape at that frame. This is then refined
through geometric alignment to represent the detailed shape
for each frame.

3.4. Geometric Alignment

This section describes a pipeline that converts an un-
structured mesh sequence into a temporally consistent mesh
sequence. The pipeline takes as input the reposed refer-
ence mesh obtained from the animation framework, Section
3.3. Temporally consistent meshes are produced by opti-
mising for rigid-registration and non-rigid deformation us-
ing a Laplacian deformation.

Rigid Surface Registration: Geometric surface registra-
tion receives as input the initial animation mesh vertices
NP , and will iteratively find an optimal rigid transforma-



tion Tp = fRp; tpgNP
p=1, where Rp is a 3 � 3 rotation ma-

trix and tp is a translation that aligns two sets of 3D ver-
tices fPpgNP

p=1 defined as patches. The following section
describes the approach taken to refine transformation that
overlaps the two data sets: Patch-based Iterative Closest
Point (PbICP) is employed to estimate the rigid transfor-
mation from nearest point correspondence [4, 6].

Patch-based Iterative Closest Point Framework: PbICP
consists of three processes: ICP, registration and corre-
spondence search. The objective of this framework is to
guarantee the best fitting between a patch and a target
mesh. Patches are generated using a geodesic variant of
the Lloyd’s algorithm [20] which partitions the mesh into
hierarchy of regions, and reshapes the data until it has
uniformly-sized convex cells.

The patches maintain local mesh detail and allow for
re-positioning onto the target surface, thus creating a new
pose with minimal loss in surface detail. The registration
is performed using a variant of ICP [14, 25, 35] represented
by Equation 3, and guarantees to return the best transfor-
mation between two meshes. The correspondence search
computes the closest point from all source NA to target NF
vertices within the patches, and vice-versa, taking into ac-
count the vertex normals and distances. Thus, the search
area is constrained to be the best approximation to the patch.
To stop the rigid transformation from drifting, a constraint
on the correspondence search is introduced, rejecting ver-
tex matches where the difference in normal angle is greater
than 50�.

E = arg min
Rp;tp

NAX
a=1

min
f2NF

wajjRpppa + tp � qf jj2 (3)

where wa is the weight corresponding to the residual dis-
tance between source fppagNA

a=1 and target points fqfgNF

f=1.
Equation 3 estimates an optimal transformation that

minimises the error for a patch has been found. This is
done by re-calculating the closest points on every iteration,
allowing the patch to find different correspondences
throughout the fitting process.

Laplacian Deformation Framework: The Laplacian
consists of differential coordinates to represent a mesh
surface [19, 34]. Differential coordinates [12, 13] represent
local geometric detail. The PbICP results in an approx-
imation of the target mesh, although rigid displacement
tends to cause artefacts and remove the integrity. The
Laplacian deformation regularises the mesh to its original
shape condition and fit to the target mesh. To solve the
Laplacian deformation problem, we first constrain a group
of vertices so we can find a least squares solution for the

unconstrained vertices, allowing the mesh M to deform.

~vu = argmin
vu

jjLvu � �(vk)jj2 + jjWc(vu � vk)jj2 (4)

where vu is the set of unknown deformed vertex locations
to be computed and vk is the known vertex locations. The
vertices vk can also represent hard constraints, depending
on if the vertex is predefined to be exactly transformed to its
target position. Consequently each element of vk is defined
with the following constraints.

vk =

�
vk if the location of the kth vertex is known

0 otherwise (5)

The rigidity of the mesh is defined as jjLvu � �jj2, al-
lowing the mesh surface to be manipulated onto the tar-
get shape. The preservation of surface detail is described
by a constraint energy as jjWc(vu � vk)jj2, providing uni-
form weighting along the mesh surface, preserving detail
and shape. The variable Wc represents the diagonal weight
matrix, where each position on its diagonal is 1 if the cor-
responding vertex is constrained, and 0 otherwise. To solve
the location for all vertices based on soft constraints, Equa-
tion 4 is minimised with respect to vu. The Laplacian oper-
ator L = GTDG, whereG is the discrete gradient operator,
and D is the diagonal matrix of triangle areas and �(vk) is
the differential coordinates of vk [27].

4. Results and Evaluation
This section presents results and evaluation for the pro-

posed hybrid skeletal-driven surface registration, presented
in section 3 compared with previous model-based and
model-free alignment approaches.

Error Metric: Evaluation is performed using one-sided
Hausdorff distance defined as HB(A) = supa2A d(a;B),
where d(a;B) is the distance from a point a to a set B,
which has shown good measurements between two 3D
meshes. The comparison was performed between the final
temporally consistent result and the target mesh reconstruc-
tion at each time instance. We have evaluated our results
against both model-based and model-free approaches.

Model-based: We have measured the results against two
publicly available sequences from Vlasic et al. [31], Samba
and Crane datasets (Figure 3 row 1 and row 2) to the tar-
get mesh reconstruction and compared with the proposed
results, see Figure 4 and Figure 5. From Figure 7, it is visi-
ble that the mean error is smaller then 1 cm, demonstrating
the ability to maintain local fine details on loose clothing
sequences. Comparing with Vlasic datasets we were able
to maintain the same human pose and maintain the clothing
dynamics tracked from the proposed pipeline.




