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Abstract

We present an approach to multi-person 3D pose esti-
mation and tracking from multi-view video. Following in-
dependent 2D pose detection in each view, we: (1) correct
errors in the output of the pose detector; (2) apply a fast
greedy algorithm for associating 2D pose detections be-
tween camera views, and (3) use the associated poses to
generate and track 3D skeletons. Previous methods for es-
timating skeletons of multiple people suffer long processing
times or rely on appearance cues, reducing their applica-
bility to sports. Our approach to associating poses between
views works by seeking the best correspondences first in a
greedy fashion, while reasoning about the cyclic nature of
correspondences to constrain the search. The associated
poses can be used to generate 3D skeletons, which we pro-
duce via robust triangulation. Our method can track 3D
skeletons in the presence of missing detections, substantial
occlusions, and large calibration error. We believe ours is
the first method for full-body 3D pose estimation and track-
ing of multiple players in highly dynamic sports scenes.
The proposed method achieves a significant improvement
in speed over state-of-the-art methods.

1. Introduction

The problem of estimating 3D pose from video is a well-
explored one. There has been significant research activity
into calculating 3D pose from both monocular [4, &, 23, 33]
and multi-view video [0, 13, 20, 30], yet few existing meth-
ods have been crafted for the sports domain. Sports datasets
are especially challenging for computer vision algorithms
due to: player contact and fast motion; similar player ap-
pearance; heavy occlusion; moving, low resolution and very
wide-baseline cameras; and poor calibration. However, the
potential applications of estimating the 3D pose of play-
ers in sports are wide-reaching. These include performance
analysis, motion capture, and novel applications in broad-
cast and immersive media.
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Figure 1: Results of our proposed method. The first two
rows show our results overlaid on the input images, and the
bottom row shows the results from a new camera view.

Estimating the 2D poses of multiple people in images
is a well-understood problem [10, 18]. The task of com-
bining multi-person 2D detections from multiple views to
generate 3D skeletons has also been explored [0, 12, 20].
However, none of these methods are especially applicable to
sports due to lengthy processing times, reliance on appear-
ance models, or sensitivity to calibration error and noisy
pose detections. In this paper we propose a greedy algo-
rithm to find correspondences between 2D poses in multiple
views, employing them to generate 3D skeletons. By main-
taining the connectivity of 2D poses, the resulting method
provides a significant improvement in speed versus recent
methods. We introduce techniques to correct the errors as-
sociated with multi-person pose detectors; split poses, fused
poses and swapped joints. Finally, we introduce an algo-
rithm to track our generated 3D skeletons, and hence their



2D counterparts, throughout a sequence. Our algorithm has
been shown to work on a variety of sports datasets with poor
calibration, erroneous pose detections, and substantial oc-
clusion. Example results can be seen in Figure 1.
Our contributions include:

A method for identifying and correcting errors in a

multi-person pose detector output by employing multi-

view information.

A fast greedy algorithm for identifying correspon-

dences between 2D poses in multi-view video.

A method for tracking 3D skeletons in sequences with

missing and noisy joint estimations.

2. Related Work

The literature on estimating 2D human pose from
monocular images can be categorized into single-person
[15, 34, 37] and multi-person [10, 18, 21, 28] methods.
Before the uptake in convolutional neural network (CNN)
methods, the state-of-the-art employed generative models.
Pictorial structures model a pose as a collection of con-
nected parts, with priors constraining the relative positions
or angles of each part. The parts are aligned to image data
in an energy minimization. Pictorial structures were origi-
nally applied to monocular 2D pose estimation [ 5, 27], but
have also been extended to multi-view 3D pose estimation
(1, 9.

CNNs have successfully been applied to pose estimation
[29, 34, 37]. In [34], a regressor is trained to directly return
the joint coordinates. An end-to-end architecture that learns
spatial models for pose estimation was presented in [37].

CNN-based pose estimators result in a significant in-
crease in accuracy, and provide a basis for more difficult
pose estimation tasks such as multi-person 2D pose estima-
tion [10, 18, 28]. In [10], a method is introduced to esti-
mate poses of multiple people in real-time by fusing joint
confidence maps, and a learned vector field that defines the
relationship between joints. Monocular 3D pose estimation
has been approached using pictorial structures [4], fitting
3D skeletons to 2D joints [1 1, 23], and using convolutional
architectures [33]. The methods in [26, 31] extend convo-
lutional pose estimation to video, using the temporal infor-
mation to overcome the challenges of estimating pose from
a single frame.

Markerless motion capture tracks the motion of the hu-
man skeleton in 3D without using traditional optical mark-
ers and specialized cameras. This is essential in sports
capture, where players cannot be burdened with additional
performance capture attire. There has been extensive re-
search into markerless motion capture of a single subject
[5, 22, 30, 32]. The method in [36] fuses 2D pose detec-
tions and data from inertial measurement units (IMUs) to
recover 3D pose for multiple people. In [22] IMUs and 2D
pose are combined to capture the 3D pose of a single per-

son in real-time. The pictorial structure model is extended
in [9] for use in estimating the 3D pose of a single per-
son from multiple views. An early model-based tracking
method is presented in [25], which uses multi-view silhou-
ettes and color information to track up to two people in a
studio environment. This method is effective, but requires
manual initialization of the geometry of each actor. The
method in [32] introduces a sum of Gaussians appearance
model for near video-rate motion capture of a single sub-
ject, but also requires initialization.

Multi-person markerless motion capture methods are re-
quired in order to capture team sports. Markerless motion
capture of multiple people in multi-view video has been in-
vestigated in [5, 6, 13, 14, 20]. The approaches in [14, 20]
take 2D pose detections from multiple views and use vol-
umetric voting to find all 3D joint locations. The method
in [14] clusters the 3D joints, and a 3D Pictorial Struc-
ture (3DPS) model is used to generate 3D poses for each
cluster. In [20], the 3D joints are grouped into body parts,
which are then grouped into full skeletons; the trajectory
of each skeleton is also tracked. Volumetric voting is an
effective way of estimating the 3D joints of multiple peo-
ple, provided there are enough cameras and the scene is not
crowded. However, it would be expensive if applied to a
large capture area such as a soccer stadium. Additionally,
volumetric voting is sensitive to poor calibration and erro-
neous pose detections, both of which are common in sports
datasets.

The method in [6] attempts to increase the speed of
multi-person 3DPS models by reducing the state-space to
all pairwise joint triangulations, although the method only
runs at 1fps for a single subject. A model-based tracking al-
gorithm and 2D pose detections are fused in [|3] to achieve
multi-person motion capture from minimal viewpoints, al-
though their algorithm requires initialization of every per-
son in the scene. Recent work [12] finds correspondences
between 2D poses in multiple views in an optimization
framework, combining epipolar geometry costs and CNN
appearance descriptors. A second stage fits a 3DPS model
to each person individually. The use of appearance mod-
els is not applicable in sports, where players wear match-
ing outfits. The method runs at 10fps on 3-person datasets;
significantly faster processing times are required for sports
broadcast applications.

Our method employs a greedy search to find correspon-
dences between 2D poses in different camera views, and is
able to achieve this at video-rate speeds. It relies solely
on geometry terms, rather than appearance models. The
method can compensate for some of the typical errors that
arise in multi-person 2D pose estimation. The 2D pose as-
sociations can be used to generate 3D skeletons, which are
tracked temporally, even in sequences with heavy occlusion
and erroneous pose detections.
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Figure 2: An overview of the pipeline. Our method finds correspondences between 2D pose estimations in multiple views.
We compute 3D skeletons each frame, identify tracks of 3D skeletons and filter the results.

3. Methodology

The proposed framework takes as input multi-view video
of multiple people and camera calibration. The multi-view
videos are passed through a pose detector [10] providing
unsorted 2D pose estimations each frame. Three successive
processes are applied to the data: the first step corrects some
of the errors in the output of the pose detector; the second
step applies a label to every 2D pose, ensuring consistency
between views; finally, the labelled 2D poses each frame
are used to produce a sequence of tracked 3D skeletons. A
system overview is presented in Figure 2.
2D Pose Error Correction: Single and multi-view infor-
mation is used to correct some of the errors found in the
pose detector output: part flipping, single-person splitting,
and multiple-person fusion. Flipped body parts are cor-
rected by comparing the correspondence scores of the orig-
inal and reversed poses. Candidate split poses are identified
and subsequently corrected in the pose association stage.
Per-frame 2D Pose Association: Associations between 2D
poses in differing camera views are found using a greedy
algorithm. These associations are used to generate a set of
labels, such that poses belonging to a single person share a
common label.
3D Skeleton Tracking: The labelled 2D poses are used
to generate 3D skeletons each frame. Associations are
found between skeletons in consecutive frames, resulting
in tracked 3D skeletons to which filtering is applied.

3.1. Per-frame 2D Pose Association

The aim of this stage is to find a label for each 2D pose
whereby all poses that correspond to one person share a la-
bel. A cost is assigned to all pairs of poses between views
that measures the likelihood of their being in correspon-
dence; this is used as the heuristic in finding associated
poses in a greedy algorithm. The algorithm takes a cyclic

approach, whereby new associations provide additional in-
formation about the location of skeletons in 3-space, thus
the correspondence costs can be refined before the next it-
eration.

The input to this stage is the 2D pose detections, which
have passed through the error correction process described
in section 3.2. The i-th pose in camera C is given by
p§ 2 RS, which comprises the coordinates of 25 joint de-
tections. The pose detector also provides a confidence for
each joint, § 2 R?. The j-th joint in p§ is given by pf;.
and similarly icj is the confidence of joint j. A confidence
of zero signifies that the joint was undetected in the image.
The algorithm outlined in this section produces labels for
each 2D pose; these can be used to generate 3D skeletons,
S 2 S as described in section 3.3. 3D skeletons may be
indexed either by their associated 2D poses (s{ is the skele-
ton associated with pf), or by their assigned label (S, is the
skeleton generated from all poses with label I).

3.1.1 Correspondence Costs

Upon the first iteration of the algorithm, correspondence
costs are computed between all pairs of 2D poses in dif-
ferent views. The pose correspondence cost comprises per-
joint costs for every joint the two poses have in common
(an undetected joint has a confidence of zero). The per-
joint cost could be estimated as the deviation of the detec-
tions from their respective epipolar lines, however, we opt
to use the distance of the common perpendicular vector be-
tween the two rays extending from the centres-of-projection
(COPs) through the joint detections. The advantages are
twofold: unlike an epipolar or reprojection error, this met-
ric is invariant to both the distance of the joint from the
COP, and the resolution of the camera; secondly, the cost
is measured in 3-space, and thus can be compared to 2D-
3D and 3D-3D joint correspondences, which occur in later
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Figure 3: Visualization of the three types of joint correspondence scores.

iterations of the algorithm. The cost of associating jgint 3.1.2 Pose Association Algorithm
in posex of cameraa and posey of camerabis shown in

Equation 1, and illustrated in Figure 3a. The process for nding correspondences and allocating la-

bels is outlined in algorithm 1.

b sa b« MiNmn kP, 23 ;m) Py t(pd n)k Data: 2D poses
ET (R py ) = L Result: Label associated with every 2D pose
Xy while new valid correspondenaio
1) re-issue pose labels;
whereP, ! is the inverse projection function of cameaa calculate new 3D joint locations;
thusP, 1(p§j ;m) is the point at distance along the ray recompute correspondence scores;

extending from the coordinates of joinin posep?. end
After each iteration the newly associated 2D poses are Algorithm 1: Per-frame pose association
used to infer 3D joint locations. 3D joint positions are sub-
sequently used over 2D joint coordinates where possible,
thus the correspondence costs will include 2D-3D (Equa-
tion 2, Figure 3b), and 3D-3D correspondences (Equation

New Correspondences: New pose correspondences are
sought in a greedy fashion; pairs of poses are ranked ac-
cording to:

3, Figure 3c): g = (P ps?) ©
: 1ra - b e (r2) (1)
E2D 3D (pa - gb ) = mingm kP, *(pg ;m)  sj k 5
(Py 5 Syj) = a @ where! denotes the number of shared joints between two

9 poses, and (p) is the number of poses already associated

with p2. The ordered list is traversed and the rst valid asso-
g 3P (Sa- . b ) = ks Sb_ k (3) L X L. S
X 1 Syj Xj Vij ciation is found. An association is deemed valid if the corre-

wheres’y’ is the 3D skeleton associated with 2D pq$e spondence scoreis below the empirically estimated corre-

Finally, the complete correspondence score between the fu"spond_e?_ce thresr:c;)lq =0 ‘L Fu(rjthgrmlct)re, all dlep'(indent
posesp? andp§’ is calculated as: associations must be considered simultaneously. For exam-

ple, if there is an existing association betwépfy p3), and

P EX we wish to associat@s; ps), then(pg; ps) must also be as-
(pf(‘;p?,) = 4%; f 31 ; f;j > 0g (4) sociated. Therefore, in order to ensure a new association

i is valid, the average correspondence score of all dependent
whereEX represents, in order of preference, Equation 3, 2 assouano_ns must _be_beI(_)W threshald
then 1, as shown in Equation 5: If a valid assomgmon is found, the labels are updated
8 such that all associated poses share a common label, and
2 E3 (s ;sh); if A(pg )= A(p) =1 all poses without associations have a unique label. For any
EX = E20 30 (pa:sb): if A(pR) 6 A(PD) poses with updated labels, the 3D joints are recomputed us-
> a2 e pyb _ ing the method in section 3.3. Finally, the correspondence
B (R iy ) if A(p ) = Alpy;) =0 scores are updated as per section 3.1.1, using newly com-
puted 3D joints where possible, and the list is recomputed.

A(p ) =1 if s§ has been computed, or 0 otherwise. The The algorithm repeats until no more valid pose associations
3D-3D and 2D-3D scores are favoured over 2D-2D scores4rq possible.

for their reduced ambiguity.



3.2. 2D Pose Error Correction the number of common joints is computed; this sum dis-

The pose detector provides 2D pose estimations and as{®gards any common joints for which the distance between
sociated joint con dences. Several common errors passthe coordinates is below a thresholde: nominally identi-
through this stage with high con dence: (1) left-right limb cal coordmaﬁtes. In the pose association stage (se<_:t|0n 3._1),
swaps; (2) single-person division into multiple poses; (3) the association of multiple poses vylthn_w the same image is
multiple-person fusion into a single pose. Temporal Iter- allowed, provided they have zero joints in common and both
ing and tracking at the pose estimation stage could help to@Ssociate well with a tertiary pose in another image.
rectify these errors; this is an active research area [2, 3, 19]Multiple-person fusion: = A single pose-detection may
Instead, we aim to correct these errors on a per-frame baSOmetimes span multiple people in the scene, identifying
sis, maintaining the applicability of our pose labelling algo- 2 subset of joints of each. Two problems must be solved in
rithm to short sequences and individual frames. correcting this category of error: how to recognize when it
Joint Swaps: We observe that true correspondence scoresn@s occurred; how to identify the subsets of the joints that
are lowered when a pose contains swapped limbs. To thiscorrespond to different people. The large number of possi-
end, we propose a heuristic to determine likelihood of a pair Pl€ divisions of a 25-joint pose into an indeterminate num-
of limbs being incorrectly swapped based on the averagePer of subsets belonging to separate people means identify-
minimum correspondence score with other poses. A pair ofiNg and correcting this error is highly challenging; it may

limbs is deemed incorrectly ipped if Equation 7 is satis- NOt be possible to achieve in real-time. .
ed: The result of the 2D pose association stage is a label for

each pose. We de ne rules for creating ground truth labels
that handle instances of multiple-person fusion. In cases
where a large majorityx70%) of joints in a single pose be-
long to one person, it is assigned the majority ground truth
label. In other cases, assigning a ground truth label to a pose
is ambiguous, so it is given a unique label that disassociates
it from other poses. No changes are made to the 2D pose as-

L(p2) _
e~ @
wherep2 and 2 respectively are the original and ipped
version of pose& in cameraa, and ¢ is an empirically esti-
mated threshold to determine whether a ip is necesdary.

is de ned as: - _ X .
sociation stage. In instances of multiple-person fusion, the
M (p2:b) .M (p2: b)i pose is either disassociated from all other poses due to a bad
L(p2)= —2 X . *>—; fb6& a;b2 Cg correspondence score, or associated with the person whose
b M (p2;b)i joints make up a majority. This allows for cases where a
(8) minority of joints in a pose are associated incorrectly; these

L (p2) is the average minimum correspondence score for a||w_ill be dis_regarded using outlier detection in the subsequent
other camera viewb. It excludes cameras where no pose triangulation stage.

corrgspondences are below threshQJFj Squgrmg the de—. 3.3. 3D Skeleton Tracking

nominator favours correspondences in multiple camera im- _ _

ages.M (p2; b) is the minimum correspondence score be- ~ The output from section 3.1 is a label per 2D pose.

tweenp? and all poses in camefand is de ned as: Where multiple poses have the same label, it is possible to
estimate a 3D skeleton. The 3D location of each jsjntin
M (pg;b) = min  2p (p3; P)) 9) a skeleton with label is optimised per:
y

X X
where p is the pose correspondence score seen in Equa- arg min ﬁ kPc(sy; ) pﬁ k; fp,21;c2Cg
tion 4, using only 2D joint correspondences, is a thresh- s

olding function used to eliminate pose correspondences be- . L . (1%)
low threshold . = 0:2, and is given by: whereP¢(s; ) is ais the projection af; in camerac. This

results in a set of 3D skeletons per frame. RANSAC is used
1 ifl< . during the triangulation process to eliminate outlier pose
M= . (10) detections. The bone lengths of the resultant skeleton are
0; otherwise - . -
thresholded to remove any remaining outlier 3D joints.
Single-person Division:In some cases, the joint detections Following this step, our notation is adjusted to no longer
for a single person will be incorrectly split into two or more  consider cameras, and instead consider multiple frases;
poses. In cases where a single person is associated witmow represents skeletdrin framet 2 T. St is the set of all
multiple separate 2D poses in a single image, they will typ- skeletons in frame. }j 2 f 0; 1g now represents whether
ically have no common joints between them. If the poses jointj in skeletonl at framet exists.
do share a joint, it will have the same image coordinates. The 3D skeleton tracking stage takes unsorted 3D skele-
For all pairwise combinations of poses in a single image, tons for all frames and returns sequences of 4D skeletons

J c i



and their component 2D poses. A greedy algorithm is used5 respectively. Ts is re-employed to identify and remove
to rst nd correspondences between skeletons in succes-noisy joints in each skeleton track with respect to neigh-
sive frames. The search is then extended to increasinglybouring frames. Missing joints are linearly interpolated pro-
separated frames up to a maximum g@fx . This allows vided that the correspondence of the same joint in the two
tracking of skeletons that are not present in every frame, neighbouring frames falls below threshold. A 3-frame
due to error in the association process or occlusion. Thistriangle lter is applied to all skeleton tracks to smooth the

process is outlined in algorithm 2. nal result. We compute the tracking stage of ine, how-
ever the time taken to complete this process is negligible,
Data: 3D skeletons every frame so it could be computed in real-time with a latency @fyx
Result: Sequences of 3D skeletons frames.
fori =11t0 max do .
list correspondences; 4. Results & Evaluation
fort2 T do

We test our method on a variety of datasets, both sports
and otherwise. We separately evaluate the results of both
the 2D pose association algorithm and the 3D skeleton es-
timation. We assess the accuracy of the 2D pose associa-
tion method on synthetic multi-view multi-person images.
For the evaluation of the 3D skeleton estimation we use the
Campus [7] and Shelf [5] datasets, and compare our results
to state-of-the-art methods. We also present results of the
entire pipeline on a selection of sports datasets.

for s 2 Stands| ' 2 St ' do
\ correspondences.adi;(sL :
end
end
correspondences.sort();
for c in correspondenceso
if c.coskT ¢ then
| c.conjoin();
end
end 4.1. 2D Pose Association

We create synthetic multi-view images of multiple peo-
ple using tools provided with the SURREAL dataset [35];
Correspondence CostThe correspondence costs between the scenes comprise textured models in a variety of poses.
pairs of skeletons is the same as described in section 3.1.1We create image sets with varying numbers of people and

Algorithm 2: Per-frame pose association

using only the 3D-3D joint terms: cameras, and with both narrow and wide-baseline camera
P arrangements. The subjects are contained within a circle of
 E3P D?’D (sif;s®) b % radius 2.5m, and the cameras on a circle of radius 5m. The

3D t1.al2) — ]
(s%:85°) = ' (12) narrow-baseline cameras have a spacing of 10-degrees, and

the wide-baseline cameras are equispaced around the cir-
where E3P 3P s the 3D joint correspondence cost de- cle. We run the pose detector on the images, and assign a
scribed in Equation 3. Correspondence costs are compute@round truth label to each detected pose. For poses where
for all pairwise combinations of skeletons in neighbouring the joints belong to two or more people we assign the label

frames. All pairs of skeletons in the sequence are sorted by®f the person whose joints are the majoriy70%).

increasing value of 3° = | where represents the intersec-  We runour algorithm on each set of images, and generate
tion over union of the joints in each skeleton. a binary matrix where each cell represents a pair of poses; 1
Selecting CorrespondencesAfter ranking all candidate represents a correspondenpe, a.nd 0 otherwise. We evaluate
skeleton correspondences, true correspondences can be dthe accuracy over the mgtnx, using our ground truth Igbels.
ned. The listis traversed, and if a correspondence c88t The results can be seen in Table 1. The algorithm achieves a
is below threshold’s the two skeletons are connectdd.is higher accuracy with the wide-baseline camera arrangement
an empirically obtained threshold de ning the maximum al- for @ smaller number of cameras, and a larger number of
lowable difference in 20 between successive frames. The People. This is due to improved robustness to occlusion and

process is repeated for increasing time differences, up totriangulation accuracy with wide-baseline views. Notably,
the algorithm achieves 100% on scenes with two people for

ot
i

max -+
Skeleton Tracks: After all possible skeleton correspon- all camera setups.

dences have bgen made, the result is traf:ks of skeletonﬁ.zl 3D Skeleton Estimation

throughout the video sequence. Each track is traversed, and

both the length of the track and the average number of joints  As there are no public domain multi-view sports datasets
in each frame are computed. Tracks shorter fhaftames or existing algorithms applied to multi-person tracking in
and with fewer tharT; joints on average are culled. Both sports, we evaluate on two public datasets with 3-5 cameras
thresholds are chosen empirically; we choose values 30 anéind 3 people: Campus [7] and Shelf [5]. We calculate the



Cameras Campus Dataset [7]
People 2 4 8 Method Actor1 Actor2 Actor3
Narrow-baseline Amin et al. [1] 85.00 76.56 73.70
2 100.00% 100.00% 100.00% Belagiannis et al. [6] 93.45 75.65 84.37
4 96.50% 97.55% 99.08% Ershadi-Nasab et al. [14] 94.18 92.89 84.62
6 95.78% 96.33% 98.15% Proposed 85.26 88.54 89.77
8 94.60% 98.41% 98.34% Proposed (ST) 86.62 89.01 90.66
Wide-baseline Dong etal. [17] 97.60 9330  98.00
2 100.00% ~ 100.00%  100.00% Proposed (A) 91.84 9248  92.83
4 97.78%  96.36%  98.47% Proposed (A, ST) 9184 9271  93.16
6 97.71% 98.03% 98.56%
8 | 97.68% 98.55%  98.44% @
. Shelf Dataset
Table 1: The accuracy of pose correspondences in a narrow Method © 232? 1[ ] Actor?  Acior3
and wide-baseline arrangement. Amin etal [1] 72 42 69.41 8523
percentage of correct parts (PCP) for each actor. The PCP Eiﬁgﬁ?ﬁ:s?ba; E,ﬂ] [14] Z)ggg gggg gzgg
denotes a body part as correct if the two estimated com- Proposed ' 98.95 8168 97.10
ponent joints are less than 50% of the true body-part length | proposed (sT) 9877 8589  97.10
away from their ground-truth locations. The alternative def- Dong etal. [17] 9880 9410 97 80
inition used by [12] uses the average of the distance of the Proposed (A) 99.28 91.59 97.58
two joints; we also compute this metric, which we denote Proposed (A, ST) 99.68 92.79 97.72
by (A). We compare to the methods in [1, 6, 12, 14]. These

methods are all designed for general scenes and employ (®)

3DPS models to re ne the nal skeletons; our method is Table 2: Comparison of the PCP on the Campus (a) and

designed to work on challenging sports scenes, and uses triShelf (b) datasets.

angulation to estimate the 3D skeleton for speed. We com-

pare the results of 3D skeleton estimation per-frame, andis particularly challenging, due to poor calibration and the

also following the skeleton tracking and temporal Iltering small size of the players in the image; the average bound-

stage (section 3.3) which we denote by (ST). ing box for each player is only 4479 pixels. To produce
The provided ground truth joints are for the skeleton 2D pose estimations of the soccer players, we rst detect

used in [6], whereas our pose estimator uses a differenttheir bounding boxes using [17], then run the pose detector

skeleton. Thus we compute the PCP over all body partson the cropped images. The 2D pose detections on images

except for the head. The results of the Campus and Sheltthis small are frequently erroneous or missing, especially in

dataset are shown in Tables 2a and 2b. Comparing ourcases of overlapping people. Selected frames from the nal

scores to previous methods, the state-of-the-art achieves &esults can be seen in Figure 4 and a video of the results is

higher performance on the 3-view Campus dataset. How-included in the supplementary material.

ever, all other methods use a 3DPS model to constrain the

nal joint positions; pictorial structure models have been

shown to result in more accurate joint estimations than tri- Dataset c P R D F
angulation when the number of views is small [12]. Onthe | Table-tennis [22]) 6 4 720p  2.92m 530§
5-view Shelf dataset we achieve a score that is compara- Boxing 8 5 2160p 6.38m 1000
ble to the state-of-the-art, despite not employing pose pri- Karate 16 2 2160p 2.28m 1012
ors. Although the performance of our direct triangulation Soccer[16] | 6 24 1080p 48m 120

is typically lower than using methods with priors, our algo-
rithm also outputs temporally and spatially corresponding
2D poses for the entire sequence, allowing any method to
be substituted for estimating the 3D skeletons.

Table 3: Properties of the datasets used for qualitative eval-
uation: number of cameras (C); number of people (P); cam-
era resolution (R); average camera distance from origin (D);
and number of frames (F).

4.3. Skeleton Tracking

We present qualitative results on a number of internal  To assess the quality of the tracking, we compute the
sports datasets that are summarized in Table 3. We apfnumber of ID switches, a metric commonly used in multi-
ply the full pipeline (error correction, 2D pose association, object tracking [24] that counts the number of times a
3D skeleton tracking) to these datasets, and overlay the -tracked object is assigned a new identity. These scores are
nal skeletons on the original images. The soccer dataseshown in Table 4.






