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Motivation
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Contributions
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• Accurate 3D human pose estimation  

• 3D Convolutional Neural Network

• Fusion of video and IMUs

• New multi-modal dataset



Contributions

Total Capture Dataset
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• 4 x 6 metre capture volume

• 8 x 1080p60 video cameras

• 13 IMU sensors

• Vicon ground truth labelling

• 5 subjects x 12 sequences

http://cvssp.org/data/totalcapture



Contributions

Total Capture Dataset
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Xsens MTw Awinda wireless motion 

trackers

• Calibrated orientation and 

acceleration per unit at 60Hz

Vicon motion capture for testing

• Solved skeleton provided in BVH 

format, also 60Hz

http://cvssp.org/data/totalcapture



Pipeline

Overview
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Pipeline

Volumetric Pose Estimation – Probabilistic Visual Hull (PVH)
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• Geometric proxy constructed from MVV

• Capture volume decimated into 1cm3 grid

• Voxels assigned probability of occupancy

• Downsampled to 30x30x30 grid for CNN

0 1



Pipeline

Volumetric Pose Estimation – 3D CNN Training
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• Trained with stochastic gradient descent to minimize mean squared error 

over 26 3D joint positions

• 100K unique training poses / 50K test from Total Capture dataset

• Augmented during training with random rotation around vertical axis



Pipeline

Inertial Pose Estimation
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• 13 inertial measurement units (IMUs)

• Arms and legs, feet, head, sternum and pelvis

• Manual calibration to an initial T-pose

• Joint angles inferred by forward kinematics



Pipeline

Inertial Pose Estimation – forward kinematics
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Assume fixed relative orientation between

each IMU 𝑘 ∈ 1,13 and bone: 𝑅𝑖𝑏
𝑘

Global bone orientation 𝑹𝒃
𝒌 = (𝑹𝒊𝒃

𝒌 )−𝟏 𝑹𝒊𝒘
𝒌 𝑹𝒊𝒎

𝒌

where 𝑅𝑖𝑤
𝑘 is IMU reference frame in global coordinates

and local IMU measurement 𝑅𝑖𝑚
𝑘



Pipeline

Inertial Pose Estimation – forward kinematics
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Local joint rotation 𝑹𝒉
𝒊 = 𝑹𝒃

𝒊 (𝑹𝒃
𝒑𝒂𝒓(𝒊)

)−𝟏

Inferred from parent bone, 𝑝𝑎𝑟(𝑖)
by forward kinematics beginning at root node



Pipeline

Temporal Sequence Prediction (TSP)
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• Long Short Term Memory RNN (LSTM)

• Exploits temporal nature of motion

• Independent model for each modality

• Learns joint locations based on 

previous 5 frames



Pipeline

Temporal Sequence Prediction (TSP) – LSTM details
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Memory cell,

𝒄𝒕 = 𝒇𝒕 ∘ 𝒄𝒕−𝟏 + 𝒊𝒕 ∘ 𝝈𝒉(𝑾𝒙𝒙𝒕 + 𝑼𝒄𝒉𝒕−𝟏 + 𝒃𝒄)

Input vector 𝑥𝑡, output vector ℎ𝑡 = 𝑜𝑡 ∘ 𝜎ℎ(𝑐𝑡),
learnt weights 𝑊 and 𝑈

sigmoid function 𝜎𝑔,hyperbolic tangent 𝜎ℎ,

vector constant 𝑏



Pipeline

Temporal Sequence Prediction (TSP) – LSTM details
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Memory cell,

𝒄𝒕 = 𝒇𝒕 ∘ 𝒄𝒕−𝟏 + 𝒊𝒕 ∘ 𝝈𝒉(𝑾𝒙𝒙𝒕 + 𝑼𝒄𝒉𝒕−𝟏 + 𝒃𝒄)

Input gate 𝒊𝒕 = 𝝈𝒈(𝑾𝒊𝒙𝒕 + 𝑼𝒊𝒉𝒕−𝟏 + 𝒃𝒊)

Input vector 𝑥𝑡, output vector ℎ𝑡 = 𝑜𝑡 ∘ 𝜎ℎ(𝑐𝑡),
learnt weights 𝑊 and 𝑈

sigmoid function 𝜎𝑔,hyperbolic tangent 𝜎ℎ,

vector constant 𝑏



Pipeline

Temporal Sequence Prediction (TSP) – LSTM details
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Memory cell,

𝒄𝒕 = 𝒇𝒕 ∘ 𝒄𝒕−𝟏 + 𝒊𝒕 ∘ 𝝈𝒉(𝑾𝒙𝒙𝒕 + 𝑼𝒄𝒉𝒕−𝟏 + 𝒃𝒄)

Input vector 𝑥𝑡, output vector ℎ𝑡 = 𝑜𝑡 ∘ 𝜎ℎ(𝑐𝑡),
learnt weights 𝑊 and 𝑈

sigmoid function 𝜎𝑔,hyperbolic tangent 𝜎ℎ,

vector constant 𝑏

Forget gate 𝒇𝒕 = 𝝈𝒈(𝑾𝒇𝒙𝒕 +𝑼𝒇𝒉𝒕−𝟏 + 𝒃𝒇)



Pipeline

Temporal Sequence Prediction (TSP) – LSTM details
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Memory cell,

𝒄𝒕 = 𝒇𝒕 ∘ 𝒄𝒕−𝟏 + 𝒊𝒕 ∘ 𝝈𝒉(𝑾𝒙𝒙𝒕 + 𝑼𝒄𝒉𝒕−𝟏 + 𝒃𝒄)

Input vector 𝑥𝑡, output vector ℎ𝑡 = 𝑜𝑡 ∘ 𝜎ℎ(𝑐𝑡),
learnt weights 𝑊 and 𝑈

sigmoid function 𝜎𝑔,hyperbolic tangent 𝜎ℎ,

vector constant 𝑏

Output gate 𝒐𝒕 = 𝝈𝒈(𝑾𝒐𝒙𝒕 + 𝑼𝒐𝒉𝒕−𝟏 + 𝒃𝒐)



Evaluation – video branch

Human 3.6M
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PVH Only                         PVH + TSP                        Ground Truth                   Source



Evaluation – video branch

Human 3.6M
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Average per joint error in millimetres



Pipeline

Fusion layer
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Evaluation – full pipeline

Total Capture Dataset – Full Pipeline
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PVH + TSP                             IMU + TSP                                   Fusion                                   Source



Evaluation – full pipeline

Total Capture Dataset
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Average per joint error in millimetres



Evaluation – full pipeline

Total Capture Dataset – Full Pipeline
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PVH + TSP                  IMU + TSP                       Fusion                               Source



Evaluation

Training data volume PVH resolution
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Training data randomly sampled
from ~100k MVV frames

16x16x16                            48x48x48



Evaluation

Camera ablation study
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4 cameras                                         6 cameras                                          8 cameras

Relative accuracy change (mm/joint)



Conclusion

• Novel 3D human pose estimation fusing MVV 

and IMU signals

• Demonstrates high accuracy and 

complementary nature of the two modalities

• New hybrid MVV dataset including video, IMU 

and 3D ground truth
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http://cvssp.org/data/totalcapture


