

Total Capture 3D Human Pose Estimation Fusing Video and Inertial Sensors

M. Trumble, A. Gilbert, C. Malleson, A. Hilton and J. Collomosse Centre for Vision, Speech and Signal Processing

Tuesday, 03 October 2017

Motivation

Image credit: Electronic Arts

Related Work

Wei et al. Convolutional Pose Machines, CVPR 2016

Andrews et al. Real-time Physics-based Motion Capture with Sparse Sensors, CVMP 2016

Contributions

- Fusion of video and IMUs
- New multi-modal dataset

- Accurate 3D human pose estimation
- 3D Convolutional Neural Network

Contributions

Total Capture Dataset

- 4 x 6 metre capture volume
- 8 x 1080p60 video cameras
- 13 IMU sensors
- Vicon ground truth labelling
- 5 subjects x 12 sequences

http://cvssp.org/data/totalcapture

Contributions

Total Capture Dataset

Xsens MTw Awinda wireless motion trackers

• Calibrated orientation and acceleration per unit at 60Hz

Vicon motion capture for testing

• Solved skeleton provided in BVH format, also 60Hz

http://cvssp.org/data/totalcapture

Overview

Volumetric Pose Estimation – Probabilistic Visual Hull (PVH)

- Geometric proxy constructed from MVV
- Capture volume decimated into 1cm³ grid
- Voxels assigned probability of occupancy
- Downsampled to 30x30x30 grid for CNN

Volumetric Pose Estimation – 3D CNN Training

- Trained with stochastic gradient descent to minimize mean squared error over 26 3D joint positions
- 100K unique training poses / 50K test from Total Capture dataset
- Augmented during training with random rotation around vertical axis

Inertial Pose Estimation

- 13 inertial measurement units (IMUs)
- Arms and legs, feet, head, sternum and pelvis
- Manual calibration to an initial T-pose
- Joint angles inferred by forward kinematics

Inertial Pose Estimation – forward kinematics

Assume fixed relative orientation between each IMU ($k \in [1,13]$) and bone: R_{ib}^k

Global bone orientation $R_b^k = (R_{ib}^k)^{-1} R_{iw}^k R_{im}^k$

where R_{iw}^k is IMU reference frame in global coordinates and local IMU measurement R_{im}^k

Inertial Pose Estimation – forward kinematics

Local joint rotation
$$R_h^i = R_b^i (R_b^{par(i)})^{-1}$$

Inferred from parent bone, par(i)by forward kinematics beginning at root node

Temporal Sequence Prediction (TSP)

LSTM Detail

- Long Short Term Memory RNN (LSTM)
- Exploits temporal nature of motion
- Independent model for each modality
- Learns joint locations based on previous 5 frames

Temporal Sequence Prediction (TSP) – LSTM details

Input vector x_t , output vector $h_t = o_t \circ \sigma_h(c_t)$, learnt weights *W* and *U*

Memory cell,

$$c_t = f_t \circ c_{t-1} + i_t \circ \sigma_h(W_x x_t + U_c h_{t-1} + b_c)$$

Temporal Sequence Prediction (TSP) – LSTM details

Input vector x_t , output vector $h_t = o_t \circ \sigma_h(c_t)$, learnt weights *W* and *U*

Memory cell, $c_t = f_t \circ c_{t-1} + i_t \circ \sigma_h(W_x x_t + U_c h_{t-1} + b_c)$

Input gate $i_t = \sigma_g(W_i x_t + U_i h_{t-1} + b_i)$

Temporal Sequence Prediction (TSP) – LSTM details

Input vector x_t , output vector $h_t = o_t \circ \sigma_h(c_t)$, learnt weights W and U

Memory cell,

$$c_t = f_t \circ c_{t-1} + i_t \circ \sigma_h(W_x x_t + U_c h_{t-1} + b_c)$$

Forget gate
$$f_t = \sigma_g(W_f x_t + U_f h_{t-1} + b_f)$$

Temporal Sequence Prediction (TSP) – LSTM details

Input vector x_t , output vector $h_t = o_t \circ \sigma_h(c_t)$, learnt weights *W* and *U*

Memory cell,

$$c_t = f_t \circ c_{t-1} + i_t \circ \sigma_h(W_x x_t + U_c h_{t-1} + b_c)$$

Output gate
$$o_t = \sigma_g(W_o x_t + U_o h_{t-1} + b_o)$$

Evaluation – video branch

Human 3.6M

Evaluation – video branch

Human 3.6M

Approach	Direct.	Discus	Eat	Greet.	Phone	Photo	Pose	Purch.
Tri-CPM	125.0	111.4	101.9	142.2	125.4	147.6	109.1	133.1
Tri-CPM-TSP	67.4	71.9	65.1	108.8	88.9	112.0	55.6	77.5
PVH-TSP	92.7	85.9	72.3	93.2	86.2	101.2	75.1	78.0
	Sit.	Sit D	Smke	Wait	W.Dog	walk	W. toget.	Mean
Tri-CPM	135.7	142.1	116.8	128.9	111.2	105.2	124.2	124.0
Tri-CPM-TSP	92.7	110.2	80.3	100.6	71.7	57.2	77.6	88.1
PVH-TSP	83.5	94.8	85.8	82.0	114.6	94.9	79.7	87.3

Average per joint error in millimetres

Fusion layer

Evaluation – full pipeline

Total Capture Dataset – Full Pipeline

Evaluation – full pipeline

Total Capture Dataset

Approach	SeenSubjects(S1,2,3)			Unsee	Mean		
	W2	FS3	A3	W2	FS3	A3	
Tri-CPM	79.0	112.1	106.5	79.0	149.3	73.7	99.8
Tri-CPM-TSP	45.7	102.8	71.9	57.8	142.9	59.6	80.1
3D PVH	48.3	122.3	94.3	84.3	168.5	154.5	107.3
3D PVH-TSP	38.8	86.3	72.6	69.1	112.9	119.5	81.1
Solved IMU	62.4	129.5	78.7	68.0	162.5	146.0	107.9
Solved IMU-TSP	39.4	118.7	52.8	58.8	141.1	135.1	91.0
Fused-Mean IMU+3D PVH	37.3	113.8	61.3	45.2	156.7	136.5	91.8
Fused-DL IMU+3D PVH	30.0	90.6	49.0	36.0	112.1	109.2	70.0

Average per joint error in millimetres

Evaluation – full pipeline

Evaluation

Training data volume

PVH resolution

Training Data Volume	Relative Accuracy
20%	87.1%
40%	90.4%
60%	96.7%
80%	99.4%

Training data randomly sampled from ~100k MVV frames

PVH Dimensions	Per joint error (mm)
16x16x16	111
30x30x30	107
48x48x48	110

Tuesday, 03 October 2017

Evaluation

Camera ablation study

Num Cams	SeenSubjects(S1,2,3)			Unsee	Mean		
	W2	FS3	A3	W2	FS3	A3	
4	93.8%	90.8%	95.3%	91.6%	89.5%	93.5%	90.4%
6	94.3%	99.3%	97.4%	96.0%	98.2%	98.1%	96.2%
8	100%	100%	100%	100%	100%	100%	100%

Relative accuracy change (mm/joint)

- Novel 3D human pose estimation fusing MVV and IMU signals
- Demonstrates high accuracy and complementary nature of the two modalities
- New hybrid MVV dataset including video, IMU and 3D ground truth

http://cvssp.org/data/totalcapture

Example frames from the TotalCapture dataset

Introduction

The TotalCapture dataset is designed for 3D pose estimation from markerless multi-camera capture, It is the first dataset to have fully synchronised muli-view video, IMU and Vicon labelling for a large number of frames (-1.9M), for many subjects, activities and viewpoints. The dataset is publically available, and the source of dataset should be acknowledged in all publications in which it is used as by referencing the following paper : and this web-site

Dataset Link

TotalCapture Dataset Link

Note that the dataset requires registeration, please check the licence information at the bottom of the page

Citation

#INPROCEEDINGs{TrumbleBMVC17, title = {Total Capture: 3D Human Pose Estimation Fusing Video and Inertial Sensors}, year={2017}, booktitle={EMVC17}, author={Trumble, M., Gilbert, A., Malleson, C., Hilton, A. and Collomosse, J.}

Dataset Overview

The dataset contains a number of subjects performing varied actions and viewpoints. It was captured indoors in a volume measuring roughly 8x4m with 8 calibrated HD video cameras at 60Hz. There are 4 male and 1 female subjects each